This study aimed at assessing the toxic effects of industrial effluents using duckweed (Lemna minor L.) plants as a test system. Growth inhibition test according to standardized protocol (ISO 20079) was performed. The suitability of the Comet assay (indicates DNA damage) and certain parameters such as peroxidase activity and lipid peroxidation level, as biomarkers for environmental monitoring was evaluated. The water samples were collected monthly over a 3-month period from the stream near the industrial estate of Savski Marof, Croatia. All samples caused inhibition of growth rates based on frond number and biomass as well as decrease of chlorophylls content. In contrast, peroxidase activity, malondialdehyde content and tail extent moment (measure of DNA strand breaks) markedly increased. Obtained data demonstrate the relevance of duckweed as sensitive indicators of water quality as well as the significance of selected biological parameters in the reliable assessment of phyto- and genotoxic potential of complex wastewaters.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10646-009-0408-0DOI Listing

Publication Analysis

Top Keywords

duckweed lemna
8
lemna minor
8
peroxidase activity
8
ecotoxicological assessment
4
assessment industrial
4
industrial effluent
4
effluent duckweed
4
minor test
4
test organism
4
organism study
4

Similar Publications

The dual impact of tire wear microplastics on the growth and ecological interactions of duckweed Lemna minor.

Environ Pollut

January 2025

Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia; Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic. Electronic address:

Tire wear microplastics (TWMs) are continuously generated during driving and are subsequently released into the environment, where they pose potential risks to aquatic organisms. In this study, the effects of untreated, hydrated, and aged (in stream water) TWMs on the growth, root development, photosynthesis, electron transport system (ETS) activity, and energy-rich molecules of duckweed Lemna minor were investigated. The results indicated that untreated and aged TWMs have the most pronounced negative effects on Lemna minor, as evidenced by reduced growth and impaired root development.

View Article and Find Full Text PDF

Optimisation of Dairy Soiled Water as a Novel Duckweed Growth Medium.

Plants (Basel)

January 2025

School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, T23 TK30 Cork, Ireland.

As a result of intensive agriculture, large quantities of liquid wastewaters are produced. Dairy soiled water (DSW) is produced in large volumes during the milking process of cattle. It comprises essential plant nutrients such as nitrogen, phosphorus, and potassium.

View Article and Find Full Text PDF

D1-104/3 and C31-106/3 differentially modulate the antioxidative response of duckweed ( L.) to salt stress.

Front Microbiol

December 2024

Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Article Synopsis
  • Duckweed is a valuable model for studying plant responses to stress, specifically focusing on how bacterial strains D1-104/3 and C31-106/3 influence growth and stress responses under salt stress (10 and 100 mM NaCl).
  • The experiment measured various physiological parameters after 14 days, revealing that both bacterial strains colonized duckweeds and affected growth differently, with C31-106/3 showing a longer doubling time but reducing chlorosis.
  • Results indicated that both bacterial strains enhanced antioxidant capacity and reduced oxidative stress, with significant differences in their impacts on proline, chlorophyll, and enzyme activities, particularly at higher salt concentrations.
View Article and Find Full Text PDF

Numerous management methods are deployed to try to mitigate the destructive impact of weedy and invasive populations. Yet, such management practices may cause these populations to inadvertently evolve in ways that have consequence on their invasiveness. To test this idea, we conducted a two-step field mesocosm experiment; we evolved genetically diverse populations of the duckweed to targeted removal management and then tested the impact of that evolution in replicated invasions into experimental resident communities.

View Article and Find Full Text PDF

Transgenerational Plasticity Enhances the Tolerance of Duckweed () to Stress from Exudates of .

Int J Mol Sci

December 2024

Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.

Transgenerational plasticity (TGP) refers to the influence of ancestral environmental signals on offspring's traits across generations. While evidence of TGP in plants is growing, its role in plant adaptation over successive generations remains unclear, particularly in floating plants facing fluctuating environments. Duckweed (), a common ecological remediation material, often coexists with the harmful bloom-forming cyanobacterium , which releases a highly toxic exudate mixture (MaE) during its growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!