Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Postnatal maturation of the heart is characterized by decreasing tolerance to ischemia/reperfusion (I/R) injury associated with significant changes in mitochondrial function. The aim of this study is to test the hypothesis that the role of the mitochondrial membrane permeability transition pore (MPTP) in the I/R injury differs in the neonatal and in the adult heart. For this purpose, the effect of blockade of MPTP on the degree of I/R injury and the sensitivity of MPTP to swelling-inducing agents was compared in hearts from neonatal (7 days old) and adult (90 days old) Wistar rats. It was found that the release of NAD(+) from the perfused heart induced by I/R can be prevented by sanglifehrin A (SfA) only in the adult myocardium; SfA had no protective effect in the neonatal heart. Furthermore, the extent of Ca-induced swelling of mitochondria from neonatal rats was significantly lower than that from the adult animals; mitochondria from neonatal rats were more resistant at higher concentrations of calcium. In addition, not only the extent but also the rate of calcium-induced swelling was about twice higher in adult than in neonatal mitochondria. The results support the idea that lower sensitivity of the neonatal MPTP to opening may be involved in the mechanism of the higher tolerance of the neonatal heart to I/R injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-009-0251-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!