We present what we believe to be the first experimental determination of the third-order optical susceptibility chi((3)) of bulk cuprous oxide (Cu(2)O) crystals. The measured nonlinear refractive index, obtained with the Z-scan technique at 1064 nm, is n(2)=1.32x10(-10) esu, while the two-photon absorption coefficient is beta=5.0 cm/GW of Cu(2)O. We also observe strong third-harmonic generation (THG) from Cu(2)O in our detection range owing to its unique crystal and electronic structure. Considering that the first nonvanishing nonlinear term is chi((3)), this classical semiconductor could be utilized as a promising active THG medium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.34.002817 | DOI Listing |
Sci Rep
January 2025
Preparatory Institute for Engineering Studies of Kairouan, (I.P.E.I.K) University of Kairouan, Kairouan, Tunisia.
We present a comprehensive analysis of the optical attributes of graphene sheets with charge carriers residing on a curved substrate. In particular, we focus on the fascinating case of Beltrami geometry and provide an explicit parametrization for this curved two-dimensional surface. By employing the massless Dirac description that is characteristic of graphene, we investigate the impact of the curved geometry on the optical properties within the sample.
View Article and Find Full Text PDFInorg Chem
January 2025
Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China.
Three two-dimensional (2D) chiral Ag(I) complexes with formulas [Ag(L)(5-nipa)] (), [Ag(L)(5-nipa)] (), and {[Ag(L)(5-hipa)]·2HO} () were prepared through the reactions of AgO with enantiopure -monodentate N-donors (L/L) and different dicarboxylic acids bearing A (acceptor)-π-- and D (donor)-π--type structural features, where / = (-)/(+)-2-(4'-pyridyl)-4,5-pinene-pyridine, 5-Hnipa = 5-nitroisophthalic acid, and 5-Hhipa = 5-hydroxyisophthalic acid. A study of their nonlinear optical responses reveals that chiral and enantiomeric pairs with the A-π--type dicarboxylic acid ligand simultaneously display second- and third-harmonic generation (SHG and THG) responses, while chiral containing the D-π--type dicarboxylic acid ligand only exhibits a very strong THG response. The THG intensity of is 451 × α-SiO, being about 27 and 24 times larger than those of and , respectively.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
Graphene has unique properties paving the way for groundbreaking future applications. Its large optical nonlinearity and ease of integration in devices notably makes it an ideal candidate to become a key component for all-optical switching and frequency conversion applications. In the terahertz (THz) region, various approaches have been independently demonstrated to optimize the nonlinear effects in graphene, addressing a critical limitation arising from the atomically thin interaction length.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States.
Sci Rep
December 2024
Department of physics, Faculty of Science, Malayer University, Malayer, Iran.
This study investigates the optical properties of carbon nanotubes (CNTs) and silicene nanotubes (SiNTs) under the influence of external magnetic fields, focusing on their linear and nonlinear optical responses. A tight-binding model is employed to analyze the effects of magnetic fields on the electronic band structure, dipole matrix elements, and various optical susceptibilities of zigzag CNTs and SiNTs. The results reveal significant magnetic field-induced modifications in both linear and nonlinear optical spectra.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!