Reduced testosterone as a result of catabolic illness or aging is associated with loss of muscle and increased adiposity. We hypothesized that these changes in body composition occur because of altered rates of protein synthesis under basal and nutrient-stimulated conditions that are tissue specific. The present study investigated such mechanisms in castrated male rats (75% reduction in testosterone) with demonstrated glucose intolerance. Over 9 wk, castration impaired body weight gain, which resulted from a reduced lean body mass and preferential sparing of adipose tissue. Castration decreased gastrocnemius weight, but this atrophy was not associated with reduced basal muscle protein synthesis or differences in plasma IGF-I, insulin, or individual amino acids. However, oral leucine failed to normally stimulate muscle protein synthesis in castrated rats. In addition, castration-induced atrophy was associated with increased 3-methylhistidine excretion and in vitro-determined ubiquitin proteasome activity in skeletal muscle, changes that were associated with decreased atrogin-1 or MuRF1 mRNA expression. Castration decreased heart and kidney weight without reducing protein synthesis and did not alter either cardiac output or glomerular filtration. In contradistinction, the weight of the retroperitoneal fat depot was increased in castrated rats. This increase was associated with an elevated rate of basal protein synthesis, which was unresponsive to leucine stimulation. Castration also decreased whole body fat oxidation. Castration increased TNFα, IL-1α, IL-6, and NOS2 mRNA in fat but not muscle. In summary, the castration-induced muscle wasting results from an increased muscle protein breakdown and the inability of leucine to stimulate protein synthesis, whereas the expansion of the retroperitoneal fat depot appears mediated in part by an increased basal rate of protein synthesis-associated increased inflammatory cytokine expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781348 | PMC |
http://dx.doi.org/10.1152/ajpendo.00473.2009 | DOI Listing |
PLoS Pathog
January 2025
State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
Foot-and-mouth disease virus (FMDV) are small, icosahedral viruses that cause serious clinical symptoms in livestock. The FMDV VP1 protein is a key structural component, facilitating virus entry. Here, we find that the E3 ligase RNF5 interacts with VP1 and targets it for degradation through ubiquitination at the lys200 of VP1, ultimately inhibiting virus replication.
View Article and Find Full Text PDFSci Adv
January 2025
Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark.
Nutrient deprivation is a major trigger of autophagy, a conserved quality control and recycling process essential for cellular and tissue homeostasis. In a high-content image-based screen of the human ubiquitome, we here identify the E3 ligase Pellino 3 (PELI3) as a crucial regulator of starvation-induced autophagy. Mechanistically, PELI3 localizes to autophagic membranes, where it interacts with the ATG8 proteins through an LC3-interacting region (LIR).
View Article and Find Full Text PDFSci Adv
January 2025
State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China.
Acute alcohol intoxication could cause multiorgan damage, including nervous, digestive, and cardiovascular systems, and in particular, irreversible damage to the brain and liver. Emerging studies have revealed that the endogenous multienzymatic antioxidant defense system (MEAODS) plays a central role in preventing oxidative stress and other toxicological compounds produced by alcohol. However, few available drugs could quickly regulate MEAODS.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkiye.
siRNA-loaded nanoparticles open new perspectives for cancer treatment. MAPK6 is upregulated in breast cancer and is involved in cell growth, differentiation and cell cycle regulation. Herein, we aimed to investigate the anticancer effects of MAPK6 knockdown by using MAPK6 siRNA-loaded PLGA nanoparticles (siMAPK6-PLGA-NPs) in MCF-7 breast cancer cells.
View Article and Find Full Text PDFFEBS J
January 2025
Greg Marzolf Jr. Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA.
Pathogenic variants in HMGCR were recently linked to a limb-girdle muscular dystrophy (LGMD) phenotype. The protein product HMG CoA reductase (HMGCR) catalyzes a key component of the cholesterol synthesis pathway. The two other muscle diseases associated with HMGCR, statin-associated myopathy (SAM) and autoimmune anti-HMGCR myopathy, are not inherited in a Mendelian pattern.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!