AI Article Synopsis

  • The venom of the brown widow spider (BrWS) causes severe systemic reactions, including muscle cramps, nausea, and hypertension, potentially due to damage to the nervous system and adrenal glands.
  • Research shows that the venom affects adrenal gland cells, leading to acute adrenal insufficiency, and causes significant alterations in intracellular membranes within hours.
  • The study also identifies specific proteolytic activities within the venom, which may disrupt cell-matrix adhesion proteins and contribute to hemostatic issues in individuals affected by envenoming.

Article Abstract

Brown widow spider (BrWS) (Latrodectus geometricus) venom produces intense systemic reactions such as cramps, harsh muscle nociceptive, nauseas, vomiting and hypertension. The proposed pathogenic mechanisms resulting in these accidents have principally been damages occurring at the nervous system. However, it is suspected that there is also damage of the adrenal glands, as a result of the experimental animal's clinical manifestations, which developed symptoms compatible with acute adrenal insufficiency. We have currently found that the adrenal gland is damaged by this venom gland homogenates (VGH) producing severe alterations on cortex cells resulting in death by acute adrenal insufficiency. In general, the ultrastructural study on the glands of mice under transmission electronic microscopy observations showed alterations in the majority of the intracellular membranes within 3 to 24h. BrWSVGH also showed specific actions on extracellular matrix proteins such as fibronectin, laminin and fibrinogen. In addition, zymogram experiments using gelatin as substrates detected gelatinolytic activity. The molecular exclusion fractionation of crude BrWSVGH resulted in 15 fractions, of which F1 and F2 presented alpha/beta-fibrinogenase and fibronectinolytic activities. Fractions F6, F14 and F15 showed only alpha-fibrinogenase activity; in contrast, the gelatinolytic action was only observed in fraction F11. Only metalloproteinase inhibitors abolished all these proteolytic activities. Our results suggest that adrenal cortex lesions may be relevant in the etiopathogenesis of severe brown widow spider envenoming. To our knowledge, this is the first report on adrenal gland damages, fibrinogenolytic activity and interrelations with cell-matrix adhesion proteins caused by L.geometricus VGH. The venom of this spider could be inducing hemostatic system damages on envenomed patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2009.09.005DOI Listing

Publication Analysis

Top Keywords

adrenal gland
12
brown widow
12
widow spider
12
latrodectus geometricus
8
acute adrenal
8
adrenal insufficiency
8
adrenal
7
activities hemostatic
4
hemostatic proteins
4
proteins adrenal
4

Similar Publications

Concurrent mutations in tumor protein p53 (TP53) or Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2-pathway components are linked to poor outcomes in epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC), but the impact of triple mutations remains unclear. We report a case of EGFR-, TP53-, and Cullin 3 (CUL3)-mutant NSCLC in a 43-year-old woman with widespread metastases at diagnosis, including those in the contralateral lung, distant lymph nodes, pericardium, liver, bones, left adrenal gland, and brain. She received osimertinib as first-line therapy, but pericardial effusion and liver metastases progressed rapidly over 3 months, and she was switched to carboplatin and pemetrexed.

View Article and Find Full Text PDF

Background: Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant disorder, accompanied by multiple endocrine neoplasms of the parathyroid, pancreas, pituitary, and other neoplasms in the adrenal glands. However, in some cases, patients clinically diagnosed with MEN1 may be genotype-negative.

Case Presentation: A 56-year-old female was diagnosed with MEN1 based on a macroprolactinoma (19 mm in diameter), primary hyperparathyroidism, and a cortisol-producing adrenal adenoma, without a family history.

View Article and Find Full Text PDF

Adaptive remodeling of rat adrenomedullary stimulus-secretion coupling in a chronic hypertensive environment.

Cell Mol Life Sci

December 2024

Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France.

Chronic elevated blood pressure impinges on the functioning of multiple organs and therefore harms body homeostasis. Elucidating the protective mechanisms whereby the organism copes with sustained or repetitive blood pressure rises is therefore a topical challenge. Here we address this issue in the adrenal medulla, the master neuroendocrine tissue involved in the secretion of catecholamines, influential hormones in blood pressure regulation.

View Article and Find Full Text PDF

Aldosterone-producing adenoma (APA) is a leading cause of primary aldosteronism (PA), a condition marked by excessive aldosterone secretion. CYP11B2, the aldosterone synthase, plays a critical role in aldosterone biosynthesis and the development of APA. Despite its significance, encoding regulatory mechanisms governing CYP11B2, particularly its degradation, remain poorly understood.

View Article and Find Full Text PDF

Pheochromocytoma in von Hippel-Lindau Disease: Clinical Features and Comparison With Sporadic Pheochromocytoma.

Clin Endocrinol (Oxf)

December 2024

Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Objectives: Pheochromocytomas and paragangliomas (PPGLs) are manifestations of von Hippel-Lindau (VHL) disease. This study aims to describe the clinical features of PPGLs in VHL patients and the distinctions between VHL disease-related PPGLs and sporadic PPGLs.

Design, Patients And Measurements: The study included all patients with VHL disease and PPGLs treated in a single centre from 2007 to 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!