Background: The present study represents the first attempt to functionally characterize two common single nucleotide polymorphisms (SNPs) in the 3'untranslated regions (3'UTRs) of estrogen receptor beta (ERbeta), focusing on the differences between alleles with regard to mRNA stability and translatability. These two ERbeta SNPs have been investigated for association with disease in a large number of reports.
Results: Here we examined allelic expression in breast tumor samples from heterozygous individuals. A significant difference in mRNA levels of the two alleles was observed for one of the SNPs. A cell model system was employed to further investigate potential molecular effects of the two SNPs. We used a modified plasmid, containing the ERbeta promoter and ERbeta 3'UTRs which include the different alleles of investigated SNPs. Quantitative Real-Time PCR was used to determine mRNA levels after inhibition of transcription by actinomycin D, and a luciferase assay was used to determine protein levels. The obtained results suggested that there was no difference in mRNA stability or translatability between the alleles of investigated SNPs.
Conclusion: Our results indicate that observed associations between ERbeta 3'UTR SNPs and disease susceptibility are due to linkage disequilibrium with another gene variant, rather than the variant itself being the susceptibility factor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759954 | PMC |
http://dx.doi.org/10.1186/1471-2156-10-55 | DOI Listing |
PLoS Genet
January 2025
Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America.
Stem cell pluripotency gene Sox2 stimulates expression of proneural basic-helix-loop-helix transcription factor Atoh1. Sox2 is necessary for the development of cochlear hair cells and binds to the Atoh1 3' enhancer to stimulate Atoh1 expression. We show here that Sox2 deletion in late embryogenesis results in the formation of extra hair cells, in contrast to the absence of hair cell development obtained after Sox2 knockout early in gestation.
View Article and Find Full Text PDFNaturwissenschaften
January 2025
Department of Biology, University of Washington, Seattle, WA, 98195, USA.
Four main classes of introns (group I, group II, spliceosomal, and archaeal) have been reported for all major types of RNA from nuclei and organelles of a wide range of taxa. When and how introns inserted within the genic regions of genomes, however, is often unclear. Introns were examined from Archaea, Bacteria, and Eukarya.
View Article and Find Full Text PDFViroids, small circular non-coding RNAs, act as infectious pathogens in higher plants, demonstrating high stability despite consisting solely of naked RNA. Their dependence of replication on host machinery poses the question of whether RNA modifications play a role in viroid biology. Here, we explore RNA modifications in the avocado sunblotch viroid (ASBVd) and the citrus exocortis viroid (CEVd), representative members of viroids replicating in chloroplasts and the nucleus, respectively, using LC - MS and Oxford Nanopore Technology (ONT) direct RNA sequencing.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
RNA endonucleases are the rate-limiting initiator of decay for many bacterial mRNAs. However, the positions of cleavage and their sequence determinants remain elusive even for the well-studied Bacillus subtilis. Here we present two complementary approaches-transcriptome-wide mapping of endoribonucleolytic activity and deep mutational scanning of RNA cleavage sites-that reveal distinct rules governing the specificity among B.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, United States.
G-quadruplex (G4) structure is a nucleic acid secondary structure formed by guanine-rich sequences, playing essential roles in various biological processes such as gene regulation and environmental stress adaptation. Although prokaryotes growing at high temperatures have higher GC contents, the pattern of G4 structure associated with GC content variation in thermal adaptation remains elusive. This study analyzed 681 bacterial genomes to explore the role of G4 structures in thermal adaptation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!