Aim: The purpose of this article is to study a detailed mechanism of printing when film-coated tablets were irradiated by UV laser at a wavelength of 355 nm.
Methods: Hydroxypropylmethylcellulose (HPMC) film containing titanium dioxide (TiO(2)) and the film not containing TiO(2) and TiO(2) powder were lirradiated by the UV laser and estimated by the morphological observation by zoom stereo microscope, thermogravimetric analysis (TGA), total color difference (dE), X-ray powder diffraction (XRD), and dispersive Raman microscopy.
Results: In the case of the film containing TiO(2), the film showed a visible change in its color from white to gray by the UV laser irradiation. By zoom stereo microscope, it was found that the entire UV laser-irradiated area was not grayed uniformly, but many black particles, whose diameter was about 2 microm, were observed on the film. When TiO(2) powder was irradiated by the UV laser, a visible change in its color from white to gray was observed similar to the case of the film containing TiO(2). There were many black particles locally in the UV laser-treated TiO(2) powder by the morphological observation, and these black particles, agglomerates of the grayed oxygen-defected TiO(2), were associated with the visible change of the TiO(2).
Conclusion: It was found that the film-coated tablets were printed utilizing the formation of the black particles by the agglomeration of the grayed oxygen-defected TiO(2) by the UV laser irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/03639040903213725 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Nippon Denko Co., Ltd., 1-4-16 Yaesu, Chuo-ku, Tokyo 103-8282, Japan.
Terahertz waves are gathering attention as carrier waves for next-generation wireless communications such as sixth-generation wireless communication networks and autonomous driving systems. Electromagnetic-wave absorbers for the terahertz-wave region are necessary to ensure information security and avoid interference issues. Herein we report a high-performance terahertz-wave absorber composed of a composite of metallic λ-TiO and insulating TiO nanocrystals (λ-TiO@TiO).
View Article and Find Full Text PDFTalanta
January 2025
School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China. Electronic address:
Flexible sweat sensors play a crucial role in health monitoring and disease prevention by enabling real-time, non-invasive assessment of human physiological conditions. Sweat contains a variety of biomarkers, offering valuable insights into an individual's health status. In this study, we developed an advanced flexible electrochemical sensor featuring reduced graphene oxide (rGO)-based electrodes, modified with a composite material comprising nitrogen and sulfur co-doped holey graphene (HG) and MXene, with in-situ-grown TiO nanoparticles on the MXene.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
Carbon fiber (CF) has been widely used in aerospace, military, infrastructure, sports, and leisure fields owing to its excellent mechanical properties, superior corrosion and friction resistances, excellent thermal stability, and lightweight. However, the ultrablack appearance derived from the extremely strong absorption of light throughout the entire visible region makes it difficult to satisfy the aesthetic and pleasurable demands of the colorful world and limits their applications in a broader field. Herein, inspired by the , a double-layer ultrathin AlO/TiO composite structure was fabricated on CFs by the atomic layer deposition method.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Guangdong Key Laboratory of Materials and Equipment in Harsh Marine Environment, School of Ocean Engineering, Guangzhou Maritime University, Guangzhou 510725, China.
Metal oxide semiconductor (MOS) hydrogen sensors offer advantages, such as high sensitivity and fast response, but their challenges remain in achieving low-cost fabrication and stable operation at room temperature. This study investigates Nb-doped TiO (NTO) thin films prepared via a one-step micro-arc oxidation (MAO) with the addition of NbO nanoparticles into the electrolyte for room-temperature hydrogen sensing. The characterization results revealed that the incorporation of NbO altered the film's morphology and phase composition, increasing the Nb content and forming a homogeneous composite thin film.
View Article and Find Full Text PDFChem Asian J
January 2025
Catalysis and Inorganic Chemistry Division, CSIR - National Chemical Laboratory, Dr Homi Bhabha Road, Pune, 411 008, India.
Present work describes a sol-gel assisted one-pot synthesis of mesoporous Fe₂O₃-TiO₂ nanocomposites (TiFe) with different Ti : Fe ratios, and fabrication of Ag-integrated with TiFe nanocomposites (TiFeAg) by a chemical reduction method and demonstrated for high solar H generation activity in direct sunlight. Enhanced solar H production is attributed to the light absorption from entire UV+Visible region of solar spectrum combined with Schottky (Ag-semiconductor) and heterojunctions (TiO-FeO), as evidenced from HRTEM and various characterization studies. TiFeAg-2 thin film (1 wt % Ag-loaded TiFe-4) displayed the highest activity with a solar H yield of 7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!