Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
For the first time, polyelectrolyte complex (PEC) capsules were prepared from a water insoluble polyanion, namely cellulose sulfates (CSs) with a degree of substitution (DS) below 0.2 in ionic liquids (IL). Capsules prepared via interaction with the polycation poly(dimethyldiallyammonium chloride) were free of residual IL and possessed an outer shell and a hollow inner core that made them ideal containers for enzyme mediated reactions. Due to the reestablished hydrogen bond system of the low substituted CS, the capsules showed increased stability, compared to the products obtained by application of the common aqueous preparation. Encapsulation of glucose oxidase demonstrated that the steps of CS preparation, PEC capsule formation, and encapsulation could be combined in a single pot, with the elimination of time and cost consuming isolation and purification steps.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja905003r | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!