Structure and dynamics are both critical to RNA's vital functions in biology. Numerous techniques can elucidate the structural dynamics of RNA, but computational approaches based on experimental data arguably hold the promise of providing the most detail. In this Account, we highlight areas wherein molecular dynamics (MD) and quantum mechanical (QM) techniques are applied to RNA, particularly in relation to complementary experimental studies. We have expanded on atomic-resolution crystal structures of RNAs in functionally relevant states by applying explicit solvent MD simulations to explore their dynamics and conformational changes on the submicrosecond time scale. MD relies on simplified atomistic, pairwise additive interaction potentials (force fields). Because of limited sampling, due to the finite accessible simulation time scale and the approximated force field, high-quality starting structures are required. Despite their imperfection, we find that currently available force fields empower MD to provide meaningful and predictive information on RNA dynamics around a crystallographically defined energy minimum. The performance of force fields can be estimated by precise QM calculations on small model systems. Such calculations agree reasonably well with the Cornell et al. AMBER force field, particularly for stacking and hydrogen-bonding interactions. A final verification of any force field is accomplished by simulations of complex nucleic acid structures. The performance of the Cornell et al. AMBER force field generally corresponds well with and augments experimental data, but one notable exception could be the capping loops of double-helical stems. In addition, the performance of pairwise additive force fields is obviously unsatisfactory for inclusion of divalent cations, because their interactions lead to major polarization and charge-transfer effects neglected by the force field. Neglect of polarization also limits, albeit to a lesser extent, the description accuracy of other contributions, such as interactions with monovalent ions, conformational flexibility of the anionic sugar-phosphate backbone, hydrogen bonding, and solute polarization by solvent. Still, despite limitations, MD simulations are a valid tool for analyzing the structural dynamics of existing experimental structures. Careful analysis of MD simulations can identify problematic aspects of an experimental RNA structure, unveil structural characteristics masked by experimental constraints, reveal functionally significant stochastic fluctuations, evaluate the structural role of base ionization, and predict structurally and potentially functionally important details of the solvent behavior, including the presence of tightly bound water molecules. Moreover, combining classical MD simulations with QM calculations in hybrid QM/MM approaches helps in the assessment of the plausibility of chemical mechanisms of catalytic RNAs (ribozymes). In contrast, the reliable prediction of structure from sequence information is beyond the applicability of MD tools. The ultimate utility of computational studies in understanding RNA function thus requires that the results are neither blindly accepted nor flatly rejected, but rather considered in the context of all available experimental data, with great care given to assessing limitations through the available starting structures, force field approximations, and sampling limitations. The examples given in this Account showcase how the judicious use of basic MD simulations has already served as a powerful tool to help evaluate the role of structural dynamics in biological function of RNA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808146 | PMC |
http://dx.doi.org/10.1021/ar900093g | DOI Listing |
Phys Med
January 2025
IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, 20089 Rozzano, Milan, Italy.
Purpose: Total marrow (lymph-node) irradiation (TMI/TMLI) is a radiotherapy technique irradiating the whole body of a patient. The limited couch travel range in modern linacs (130-150 cm) forces to split the TMI/TMLI delivery into two plans with opposite orientation. A dedicated field junction is necessary to achieve satisfactory target coverage in the overlapping region of the two plans.
View Article and Find Full Text PDFUltrasonics
January 2025
Department of Robotics and Mechatronics, AGH University of Krakow, 30-059 Krakow, Poland. Electronic address:
Ultrasound shear wave elastography (SWE) is widely used in clinical applications for non-invasive measurements of soft tissue viscoelasticity. The study of tissue viscoelasticity often involves the analysis of shear wave phase velocity dispersion curves, which show how the phase velocity varies with frequency or wavelength. In this study, we propose an alternative method to the two-dimensional Fourier transform (2D-FT) and Phase Gradient (PG) methods for shear wave phase velocity estimation.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China.
In this context, we reported for the first time the design and development of a self-assembled nanoantiviral pesticide based on the star polycation (SPc) and the broad-spectrum fungicide/antiviral agent seboctylamine for field control of (SMV), a highly destructive plant virus in soybean crops. The SPc could self-assemble with seboctylamine through hydrogen bonds and van der Waals forces, and the complexation with SPc reduced the particle size of seboctylamine to form a spherical seboctylamine/SPc complex. In addition, the contact angle of seboctylamine decreased, and its retention increased with the aid of SPc, indicating excellent wetting properties and strong leaf surface adhesion performance.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2BX, United Kingdom.
Engine deposits can reduce performance and increase emissions, particularly for modern direct-injection fuel delivery systems. Surfactants known as deposit control additives (DCAs) adsorb and self-assemble on the surface of deposit precursors to keep them suspended in the fuel. Here, we show how molecular simulations can be used to virtually screen the ability of surfactants to bind to polyaromatic hydrocarbons, comprising a major class of carbonaceous deposits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!