Pump-probe results are reported for NeCl(2) excited to the Cl(2) B state, undergoing vibrational predissociation, and then probed via E <-- B transitions. Intensities, lifetimes and product vibrational branching ratios are reported for 16 < or = v' < or = 19 Cl(2) stretching quanta. The intensity of the signal rapidly decreases above v' = 17. Detailed wave packet calculations of the vibrational predissociation dynamics are performed to determine if the experimental results can be explained by the onset of IVR dynamics. The calculations and the experiment are in close accord for low vibrational levels. For higher levels, some, but not all, of the loss of experimental signal can be attributed to IVR. To test whether electronic relaxation dynamics are important for NeCl(2) and ArCl(2), excited state potential surfaces that incorporate spin orbit coupling effects are calculated. These surfaces are then used in a wave packet calculation that includes both vibrational predissociation and electronic predissociation dynamics. The results show that electronic predissociation is important for ArCl(2) levels above v' = 12. For NeCl(2) the calculation suggests that the onset of electronic predissociation should occur for levels as low as v' = 13 but may not contribute markedly to the observed loss of signal above v' = 17. Suggestions are made for further studies of this puzzling problem.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp906392mDOI Listing

Publication Analysis

Top Keywords

vibrational predissociation
8
necl2 arcl2
4
arcl2 transition
4
transition direct
4
direct vibrational
4
predissociation intramolecular
4
intramolecular vibrational
4
vibrational relaxation
4
relaxation electronic
4
electronic nonadiabatic
4

Similar Publications

Despite its profound significance, the molecular structural changes near the transition state, driven by the vibronic coupling, have remained largely unexplored, leaving a crucial aspect of chemical reactions shrouded in uncertainty. Herein, the dynamical behavior of the reactive flux on the verge of chemical bond breakage was revealed through the spectroscopic characterization of a large amplitude vibrational motion. Highly excited internal rotor states of S methylamine (CHND) report on the structural change as the molecule approaches the transition state, indicating that the quasi-free internal rotation is strongly coupled to the reaction coordinate as their energies near the maximum of the reaction barrier for the N-D chemical bond predissociation.

View Article and Find Full Text PDF

The dicarbon molecule, C, is one of the most important diatomic species in various gaseous environments. Despite extensive spectroscopic studies in the last two centuries, the radiative and photodissociative properties of C in its highly excited electronic states are still largely unexplored, particularly in the short vacuum ultraviolet (VUV) region. In this study, the lifetimes of C for rotational levels in the recently identified 1Σ state up to the vibrational level ν' = 4 and in the Σ state up to ν' = 2 are measured for the first time with a VUV-pump-UV-probe photoionization scheme.

View Article and Find Full Text PDF

Photofragmentation and fragment analysis; Coriolis interactions in excited states of CH.

Phys Chem Chem Phys

November 2024

Science Faculty, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.

Methyl radicals in their ground state (CH(X)) were created and excited by two- and one- color excitation schemes for CHBr and CHI, respectively, to record (2+1) REMPI spectra of CH for resonant transitions to the Rydberg states CH**(pA); = 3, 4. Various new and previously observed vibrational bands were identified and analyzed to gain energetic information for the Rydberg states. Particular emphasis was placed on analysis of the rotational structured spectra centered at 70 648 and 60 700 cm, due to transitions from to and for both Rydberg states, respectively.

View Article and Find Full Text PDF

The topology of multidimensional potential energy surfaces defines the bimolecular collision outcomes of open-shell radicals with molecular partners. Understanding these surfaces is crucial for predicting the inelastic scattering and chemical transformations of increasingly complex radical-molecule collisions. To characterize the inelastic scattering mechanisms of nitric oxide (NO) radicals with large alkanes, we generated the collision complexes comprised of NO with propane or -butane.

View Article and Find Full Text PDF

An automatic variable laser power attenuator for continuous-wave quantum cascade lasers in cryogenic ion vibrational predissociation spectroscopy.

Rev Sci Instrum

September 2024

Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.

Cryogenic ion vibrational predissociation (CIVP) spectroscopy is an established and valuable technique for molecular elucidation in the gas phase. CIVP relies on tunable lasers, wherein among typical laser schemes, the application of mid-infrared continuous-wave quantum cascade laser (cw-QCL) is the most robust and elegant solution, as we have recently demonstrated. However, potential challenges arise from an inhomogeneous character across laser power tuning curves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!