Background: Biodegradable implants were designed to overcome the disadvantages of metal-based internal fixation devices. Although they have been in use for four decades internationally, many surgeons in India continue to be skeptical about the mechanical strength of biodegradable implants, hence this study.

Materials And Methods: A prospective study was done to assess the feasibility and surgeon confidence level with biodegradable implants over a 12-month period in an Indian hospital. Fifteen fractures (intra-articular, metaphyseal or small bone fractures) were fixed with biodegradable implants. The surgeries were randomly scheduled so that different surgeons with different levels of experience could use the implants for fixation.

Results: Three fractures (one humeral condyle, two capitulum), were supplemented by additional K-wires fixation. Trans-articular fixator was applied in two distal radius and two pilon fractures where bio-pins alone were used. All fractures united, but in two cases the fracture displaced partially during the healing phase; one fibula due to early walking, and one radius was deemed unstable even after bio-pin and external fixator.

Conclusions: Biodegradable -implants are excellent for carefully selected cases of intra-articular fractures and some small bone fractures. However, limitations for use in long bone fractures persist and no great advantage is gained if a "hybrid" composite is employed. The mechanical properties of biopins and screws in isolation are perceived to be inferior to those of conventional metal implants, leading to low confidence levels regarding the stability of reduced fractures; these implants should be used predominantly in fracture patterns in which internal fixation is subjected to minimal stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2739475PMC
http://dx.doi.org/10.4103/0019-5413.41856DOI Listing

Publication Analysis

Top Keywords

biodegradable implants
20
bone fractures
12
fractures
9
implants
8
implants fracture
8
internal fixation
8
small bone
8
biodegradable
6
preliminary experience
4
experience biodegradable
4

Similar Publications

Background: Adhesion formation poses a significant challenge for both patients and hand surgeons following tendon repair. One common strategy to prevent adhesion formation is the use of physical barriers. This study aimed to compare the outcomes of extensor tendon repair with and without the application of the OrthoWrap bioresorbable Sheet, specifically in terms of adhesion prevention.

View Article and Find Full Text PDF

Towards Accurate Biocompatibility: Rethinking Cytotoxicity Evaluation for Biodegradable Magnesium Alloys in Biomedical Applications.

J Funct Biomater

December 2024

CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.

Magnesium and its alloys represent promising candidates for biomedical implants due to their biodegradability and mechanical properties, which are similar to natural bone. However, their rapid degradation process characterized by dynamic pH fluctuations and significant hydrogen gas evolution during biocorrosion adversely affects both in vitro and in vivo assessments. While the ISO 10993-5 and 12 standards provide guidelines for evaluating the in vitro biocompatibility of biodegradable materials, they also introduce testing variability conditions that yield inconsistent results.

View Article and Find Full Text PDF

Magnesium alloys are promising biodegradable implant materials due to their excellent biocompatibility and non-toxicity. However, their poor corrosion resistance limits their application in vivo. Plasma electrolytic oxidation (PEO) is a powerful technique to improve the corrosion resistance of magnesium alloys.

View Article and Find Full Text PDF

Zn-based biodegradable metals (BMs) are regarded as revolutionary biomaterials for bone implants. However, their clinical application is limited by insufficient mechanical properties, delayed degradation, and overdose-induced Zn toxicity. Herein, innovative multi-material additive manufacturing (MMAM) is deployed to construct a Zn/titanium (Ti) hetero-structured composite.

View Article and Find Full Text PDF

A cross-linked coating loaded with antimicrobial peptides for corrosion control, early antibacterial, and sequential osteogenic promotion on a magnesium alloy as orthopedic implants.

Acta Biomater

December 2024

Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, PR China. Electronic address:

Magnesium (Mg)-based alloys have been recognized as desirable biodegradable materials for orthopedic implants. However, their clinical application has been limited by rapid degradation rates, insufficient antibacterial and osteogenic-promotion properties. Herein, a MgF priming layer was first constructed on AZ31 surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!