S23906-1 is a benzo[b]acronycine derivative acting as a DNA-alkylating agent through covalent bonding to the exocyclic amino group of guanines and subsequent local opening of the DNA helix. This compound was selected for phase I clinical trials based on its efficient antitumor activity in experimental models and its unique mode of action. S23906-1 is the racemate of cis-1,2-diacetoxy-6-methoxy-3,3,14-trimethyl-1,2,3,14-tetrahydro-7H-benzo[b]pyrano[3,2-h]acridin-7-one. Here, we evaluated the cytotoxic and antitumor activities of the two pure cis-enantiomers and investigated the mechanism of action of both cis- and trans-racemates and their enantiomers in terms of DNA alkylation potency and locally drug-induced DNA helix opening process. Reaction with glutathione, as a detoxification process, was also studied. The trans-compounds, both as racemate or separated enantiomers, were found less potent than the corresponding cis-derivatives. Among the cis-enantiomers, the most efficient one regarding DNA alkylation bears the acetate on the reactive C1 position in the R configuration, both on purified DNA and genomic DNA extracted from cell cultures. By contrast, the most cytotoxic and tumor-active enantiomer bears the C1-acetate in the S configuration. Distinct cellular DNA-alkylation levels or covalent bonding to glutathione could not explain the differences. However, we showed that the S and R orientations of the acetate on C1 asymmetric carbon lead to different local opening of the DNA, as visualized using nuclease S1 mapping. These different interactions could lead to modulated DNA-repair, protein/DNA interaction, and apoptosis processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/mol.109.057554 | DOI Listing |
Clin Epigenetics
January 2025
Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Electronical Engineering, Yaşar University, Bornova, İzmir, Turkey.
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.
View Article and Find Full Text PDFSci Rep
January 2025
The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, China.
Netrin-1 (NTN1) is a laminin-related secreted protein involved in axon guidance and cell migration. Previous research has established a significant connection between NTN1 and nervous system development. In recent years, mounting evidence indicates that NTN1 also plays a crucial role in tumorigenesis and tumor progression.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany.
The evolutionary impact of epigenetic variation depends on its transgenerational stability and source - whether genetically determined, environmentally induced, or due to spontaneous, genotype-independent mutations. Here, we evaluate current approaches for investigating an independent role of epigenetics in evolution, pinpointing methodological challenges. We further identify opportunities arising from integrating epigenetic data with population genetic analyses in natural populations.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.
Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!