Radiation effects on the auditory and vestibular systems.

Otolaryngol Clin North Am

Department of Radiation Oncology, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA.

Published: August 2009

Definitive or postoperative radiation therapy (RT) is commonly used for the management of intracranial and extracranial head and neck tumors. Because of the variability of tumor location and dimensions, sparing of nontarget normal tissue and organs may not be possible. Treatment modalities that deliver the highest doses of radiation to the auditory system include stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (FSRT) for the treatment of vestibular schwannomas (VS), and fractionated radiotherapy (FRT) or intensity-modulated radiation therapy (IMRT) for the treatment of head and neck malignancies. Radiation therapy for VS is unique because of its involvement of the inner ear and preexisting auditory and vestibular dysfunction. Auditory and vestibular dysfunction following RT for VS may be limited by limiting the total dose of cranial nerve VIII irradiation and by fractionation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.otc.2009.04.002DOI Listing

Publication Analysis

Top Keywords

auditory vestibular
12
radiation therapy
12
head neck
8
vestibular dysfunction
8
radiation
5
radiation effects
4
auditory
4
effects auditory
4
vestibular
4
vestibular systems
4

Similar Publications

 Many patients with neurofibromatosis type 2 (NF2) suffer from sensorineural hearing loss, and associated cochlear nerve compromise in NF2 patients makes auditory brainstem implant (ABI) an attractive treatment option. The long-term outcomes and benefits of the device are still being explored.  A retrospective review was conducted for 11 ABI recipients at a single-institution tertiary center between November 2017 and August 2022.

View Article and Find Full Text PDF

A CT Radiologic Assessment of the Incidence of Cochlear-Facial Dehiscence and the Thickness of Bone between the Cochlea and Facial Nerve among Normal Temporal Bones.

J Neurol Surg B Skull Base

February 2025

Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, California, CA 90095, United States.

Cochlear-facial dehiscence (CFD) is a relatively new diagnosis which occurs when the bony partition between the labyrinthine segment of the facial nerve and the cochlea is dehiscent. This is considered one of several third window lesions which produce varying degrees of auditory and vestibular symptoms. Imaging studies have identified a consistently higher incidence of CFD when compared with the only histopathologic study present in the literature.

View Article and Find Full Text PDF

Usher syndrome type 1C (USH1C) is a genetic disorder caused by mutations in the USH1C gene, which encodes harmonin, a key component of the mechanoelectrical transduction complex in auditory and vestibular hair cells. USH1C leads to deafness and vestibular dysfunction in humans. An Ush1c knockout (KO) mouse model displaying these characteristic deficits is generated in our laboratory.

View Article and Find Full Text PDF

Functional and Structural Changes in the Inner Ear and Cochlear Hair Cell Loss Induced by Hypergravity.

Int J Mol Sci

January 2025

Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Inha University, Incheon 22332, Republic of Korea.

Gravitational changes have been shown to cause significant abnormalities in various body systems, including the cardiovascular, immune, vestibular, and musculoskeletal systems. While numerous studies have examined the response of the vestibular system to gravitational stimulation, research on functional changes in the peripheral inner ear remains limited. The inner ear comprises two closely related structures: the vestibule and cochlea.

View Article and Find Full Text PDF

Objective: What we hear may influence postural control, particularly in people with vestibular hypofunction. Would hearing a moving subway destabilize people similarly to seeing the train move? We investigated how people with unilateral vestibular hypofunction and healthy controls incorporated broadband and real-recorded sounds with visual load for balance in an immersive contextual scene.

Design: Participants stood on foam placed on a force-platform, wore the HTC Vive headset, and observed an immersive subway environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!