Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurotrophic and neuroprotective peptide that has been shown to exert protective effects in different neuronal injuries, such as traumatic brain injury, models of neurodegenerative diseases and cerebral ischemia. We have provided evidence that PACAP is neuroprotective in several models of retinal degeneration in vivo. In our previous studies we showed that PACAP treatment significantly ameliorated the damaging effects of permanent bilateral common carotid artery occlusion (BCCAO). In the present study cell-type-specific markers were used in the same models in order to further specify the protective effects of PACAP. In rats BCCAO led to severe degeneration of all retinal layers that was attenuated by PACAP (100 pmol) administered unilaterally immediately following BCCAO into the vitreous body of one eye. Retinas were processed for immunohistochemistry after 3 weeks. Immunolabeling was executed for vesicular glutamate transporter 1 (VGLUT 1), vesicular gamma-aminobutyric acid transporter (VGAT), protein kinase Calpha (PKCalpha), glial fibrillary acidic protein (GFAP) and calcium-binding proteins, such as calbindin, calretinin, parvalbumin. In BCCAO retinas, intensity of immunopositivity for all antisera was dramatically decreased, except in the case of GFAP. In PACAP-treated retinas, immunostaining was similar to that of the control animals. In summary, our study presented immunohistochemical identification of cell types sensitive to chronic retinal hypoperfusion and the protective effects of PACAP. This analysis revealed that the retinoprotective effects of PACAP are not phenotype-specific, but it rather influences general cytoprotective pathways irrespective of the neuronal subtypes in the retina subjected to chronic hypoperfusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainresbull.2009.09.004 | DOI Listing |
Clin Sci (Lond)
January 2025
Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France.
Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present.
View Article and Find Full Text PDFRheumatology (Oxford)
January 2025
Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain.
Objectives: COVID-19 and systemic sclerosis (SSc) share multiple similarities in their clinical manifestations, alterations in immune response, and therapeutic options. These resemblances have also been identified in other immune-mediated inflammatory diseases where a common genetic component has been found. Thus, we decided to evaluate for the first time this shared genetic architecture with SSc.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Department of Cardiac Surgery, the First Affiliated Hospital of Xinjiang Medical University;
The objective of this study was to investigate the cardioprotective effects of Munziq on abnormal body fluid myocardial ischemia-reperfusion injury (MIRI) and its underlying mechanism.Normal rats and rats with abnormal body fluid (ABF) were pre-treated with Munziq for 21 days. Following this, MIRI models were established.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Anesthesiology and Reanimation, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
Background: Acute systemic inflammation affects many organs and it occurs in a wide range of conditions such as acute lung injury (ALI). Inflammation-triggered oxidative pathways together with the caspase activation seen in ALI, result in apoptosis. Dapagliflozin (DPG) is an agent that is known to have oxidative stress-reducing and anti-inflammatory effects in many tissues.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!