Gamma-secretase activity has been extensively investigated due to its role in Alzheimer's disease. Here, we studied the association of CD147, a transmembrane glycoprotein belonging to the immunoglobulin family, with gamma-secretase and its expression in Alzheimer's disease and control tissues. Subcellular fractionation of postmitochondrial supernatant from rat brain on step iodixanol gradient in combination with co-immunoprecipitation using an anti-nicastrin antibody showed association of limited amount of CD147 to gamma-secretase. By immunoblotting of postnuclear pellets from Alzheimer's disease and control human brain tissues we showed that CD147 with molecular weight 75 kDa is upregulated in frontal cortex and thalamus of the Alzheimer's disease brains. Immunohistochemistry of brain tissues from Alzheimer's disease and control revealed specific upregulation of CD147 in neurons, axons and capillaries of Alzheimer's disease frontal cortex and thalamus. The effect of presenilin-1 and -2, which are the catalytic subunits of gamma-secretase, on CD147 expression and subcellular localization was analyzed by confocal microscopy in combination with flow cytometry and showed that PS2 affected the subcellular localization of CD147 in mouse embryonic fibroblast cells. We suggest that a small fraction of CD147 present in the brain is associated with the gamma-secretase, and can be involved in mechanisms dysregulated in Alzheimer's disease brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2009.09.003DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
32
disease control
12
cd147
8
cd147 gamma-secretase
8
alzheimer's
8
disease
8
disease brain
8
brain tissues
8
frontal cortex
8
cortex thalamus
8

Similar Publications

The blood-brain-barrier prevents many imaging agents and therapeutics from being delivered to the brain that could fight central nervous system diseases such as Alzheimer's disease and strokes. However, techniques such as the use of stapled peptides or peptide shuttles may allow payloads through, with bioconjugation achieved bio-orthogonal tetrazine/norbornene click chemistry. A series of lanthanide-tetrazine probes have been synthesised herein which could be utilised in bio-orthogonal click chemistry with peptide-based delivery systems to deliver MRI agents through the blood-brain-barrier.

View Article and Find Full Text PDF

Background: Ultra-processed food (UPF) consumption has been linked with higher risk of mortality. This multi-centre study investigated associations between food intake by degree of processing, using the Nova classification, and all-cause and cause-specific mortality.

Methods: This study analyzed data from the European Prospective Investigation into Cancer and Nutrition.

View Article and Find Full Text PDF

Background: The number of individuals living alone with dementia is increasing throughout the world, and they have unique needs that are poorly understood. The aim of this integrative review was to understand the characteristics, needs, and perspectives of individuals living alone with dementia as well as the available community resources to guide future research and clinical practice.

Methods: Electronic (PubMed, CINAHL, and PsycINFO) and manual searches were utilized to identify articles using MeSH terms.

View Article and Find Full Text PDF

Novel multipotent conjugate bearing tacrine and donepezil motifs with dual cholinergic inhibition and neuroprotective properties targeting Alzheimer's disease.

RSC Med Chem

January 2025

Área de Neurofisiología celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Medellín Colombia

In this work, we developed potential multifunctional agents to combat Alzheimer's disease. According to our strategy, fragments of tacrine and donepezil were merged in a unique hybrid structure. After successfully synthesizing the compounds, they were evaluated for their dual AChE/BuChE inhibitor potential and neuroprotector response using a glutamate-induced excitotoxicity model.

View Article and Find Full Text PDF

An approach to predict and inhibit Amyloid Beta dimerization pattern in Alzheimer's disease.

Toxicol Rep

June 2025

Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054, India.

Alzheimer's Disease (AD) is one of the leading neurodegenerative diseases that affect the human population. Several hypotheses are in the pipeline to establish the commencement of this disease; however, the amyloid hypothesis is one of the most widely accepted ones. Amyloid plaques are rich in Amyloid Beta (Aβ) proteins, which are found in the brains of Alzheimer's patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!