Circulating cell-free DNA levels in plasma increase with severity in experimental acute pulmonary thromboembolism.

Clin Chim Acta

Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil.

Published: November 2009

Background: The diagnosis of acute pulmonary thromboembolism (APT) and its severity is challenging. No previous study has examined whether there is a linear relation between plasma DNA concentrations and the severity of APT. We examined this hypothesis in anesthetized dogs. We also examined the changes in plasma DNA concentrations in microspheres lung embolization and whether the therapy of APT with nitrite could modify APT-induced changes in plasma DNA concentrations. In vitro DNA release from blood clots was also studied.

Methods: APT was induced with autologous blood clots (saline, 1, 3, or 5 ml/kg) injected into the right atrium. A group of dogs received 300 microm microspheres into the inferior vena cava to produce similar pulmonary hypertension. Another group of dogs received 6.75 micromol/kg nitrite after APT with blood clots of 5 ml/kg. Hemodynamic evaluations were carried out for 120 min. DNA was extracted from plasma samples using QIAamp DNA Blood Mini Kit and quantified using Quant-iT PicoGreen dsDNA detection kit at baseline and 120 min after APT.

Results: APT produced dose-dependent increases in plasma DNA concentrations, which correlated positively with pulmonary vascular resistance (P=0.002, r=0.897) and with mean pulmonary arterial pressure (P=0.006, r=0.856). Conversely, lung embolization with microspheres produced no significant changes in plasma DNA concentrations. While nitrite attenuated APT-induced pulmonary hypertension, it produced no changes in plasma DNA concentrations. Blood clots released dose-dependent amounts of DNA in vitro.

Conclusions: Cell-free DNA concentrations increase in proportion to the severity of APT, probably as a result of increasing amounts of thrombi obstructing the pulmonary vessels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cca.2009.09.011DOI Listing

Publication Analysis

Top Keywords

dna concentrations
28
plasma dna
24
changes plasma
16
blood clots
16
dna
12
cell-free dna
8
plasma
8
acute pulmonary
8
pulmonary thromboembolism
8
severity apt
8

Similar Publications

Current advances and future prospects of blood-based techniques for identifying benign and malignant pulmonary nodules.

Crit Rev Oncol Hematol

January 2025

Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China. Electronic address:

Lung cancer is the leading cause of cancer-related mortality worldwide, highlighting the urgent need for more accurate and minimally invasive diagnostic tools to improve early detection and patient outcomes. While low-dose computed tomography (LDCT) is effective for screening in high-risk individuals, its high false-positive rate necessitates more precise diagnostic strategies. Liquid biopsy, particularly ctDNA methylation analysis, represents a promising alternative for non-invasive classification of indeterminate pulmonary nodules (IPNs).

View Article and Find Full Text PDF

The bacterial transcription terminator Rho is a hexameric ATP-dependent RNA helicase that dislodges elongating RNA polymerases.  It has an N-terminal primary RNA binding site (PBS) on each subunit and a C-terminal secondary RNA binding site at the central channel. Here, we show that Rho also binds to linear longer double-stranded DNAs (dsDNA) and the circular plasmids non-specifically using its PBS.

View Article and Find Full Text PDF

Tgt is the enzyme modifying the guanine (G) in tRNAs with GUN anticodon to queuosine (Q). is required for optimal growth of in the presence of sub-lethal aminoglycoside concentrations. We further explored here the role of the Q34 in the efficiency of codon decoding upon tobramycin exposure.

View Article and Find Full Text PDF

Purpose: Acanthamoeba species are eucaryotic protozoa found predominantly in soil and water. They cause ulceration and vision loss in the cornea (Acanthamoeba keratitis) and central nervous system (CNS) infection involving the lungs (granulomatous amoebic encephalitis). Antiparasitic drugs currently used in the treatment of infections caused by Acanthamoeba species are not effective at the desired level in some anatomical regions such as the eye and CNS.

View Article and Find Full Text PDF

Common salt (NaCl) causes developmental, behavioral, and physiological defects in .

Nutr Neurosci

January 2025

Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India.

Purpose: The incidence of obesity has surged to pandemic levels in recent decades. Approximately 1.89 million obesity are linked to excessive salt consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!