The intramolecularly hydrogen bonded conformations of the tetrapeptide Boc-Trp-Aib-Gly-Trp-OMe (WUGW) are investigated using experimental and quantum chemical predictions of vibrational circular dichroism (VCD) in the 1800-1550 cm(-1) region. The predicted VCD spectrum, for a conformation (conformer A) obtained from optimization of crystal structure, reproduced the dominant negative VCD band observed experimentally in CH(3)OH and CHCl(3) solvents. However, the predicted VCD spectrum of Conformation A also has an extra positive band which is not seen in the experimental spectra. This mismatch appears to be due to the lack of solvent influence in the quantum chemical geometry optimizations. However, Conformations I and II, obtained, respectively, from constrained optimization of crystal and NMR structures, mimic the solvent stabilized structures and are predicted to have dominant negative VCD band as found in the experimental spectra. It is noted that, for the peptide investigated here, unconstrained quantum chemical geometry optimizations in vacuum converged to structures that are not the realistic models of conformations found in solution. It is also noted that undertaking quantum chemical vibrational property calculations directly using geometries obtained from crystal data or NMR data resulted in unrealistic vibrational frequencies and descriptions. However, constraining the backbone dihedral angles to those found in condensed medium, and optimizing the remaining geometrical parameters resulted in a better reproduction of the observed VCD in condensed medium. The vibrational origins of bands in all of the predicted VCD spectra for the WUGW-tetrapeptide have also been presented.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chir.20779DOI Listing

Publication Analysis

Top Keywords

quantum chemical
16
predicted vcd
12
conformations tetrapeptide
8
vibrational circular
8
circular dichroism
8
vcd spectrum
8
spectrum conformation
8
optimization crystal
8
dominant negative
8
negative vcd
8

Similar Publications

Computer-aided design of caffeic acid derivatives: free radical scavenging activity and reaction force.

J Mol Model

December 2024

Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Avenida Ferrocarril San Rafael Atlixco, Número 186, Colonia Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Código Postal 09310, Ciudad de Mexico, Mexico.

Context: Antioxidants are known to play a beneficial role in human health. Caffeic acid has been previously recognized as efficient in this context. However, such a capability can be enhanced through structural modification.

View Article and Find Full Text PDF

Controllable Growth of Monolayer and Bilayer WSe by Liquid-Phase Precursor via Chemical Vapor Deposition for Photodetection.

Nanomaterials (Basel)

December 2024

School of Flexible Electronics (Future Technologies), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.

Two-dimensional WSe nanosheets have received increasing attention due to their excellent optoelectronic properties. Solid precursors, such as WO and Se powders, have been extensively employed to grow WSe nanosheets by the chemical vapor deposition (CVD) method. However, the high melting point of WO results in heterogeneous nucleation sites and nonuniform growth of the WSe nanosheet.

View Article and Find Full Text PDF

Energy generation and storage are critical challenges for developing economies due to rising populations and limited access to clean energy resources. Fossil fuels, commonly used for energy production, are costly and contribute to environmental pollution through greenhouse gas emissions. Quantum dot-sensitized solar cells (QDSSCs) offer a promising alternative due to their stability, low cost, and high-power conversion efficiency (PCE) compared to other third-generation solar cells.

View Article and Find Full Text PDF

Three New Dipeptide and Two New Polyketide Derivatives from the Mangrove-Derived Fungus sp.: Antioxidant Activity of Two Isolated Substances.

Mar Drugs

December 2024

CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.

Five new metabolites, including three cyclic dipeptide derivatives (-) and two new polyketides (-), together with nine known ones (- and -), were isolated from the mangrove-sediments-derived fungus sp. SCSIO 41431. Their structures were determined using detailed NMR, MS spectroscopic analyses, and quantum chemical calculations.

View Article and Find Full Text PDF

Metal nanoclusters (NCs) are promising alternatives to organic dyes and quantum dots. These NCs exhibit unique physical and chemical properties, such as fluorescence, chirality, magnetism and catalysis, which contribute to significant advancements in biosensing, biomedical diagnostics and therapy. Through adjustments in composition, size, chemical environments and surface ligands, it is possible to create NCs with tunable optoelectronic and catalytic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!