When a probe pulse copropagates with a pump pulse inside an optical fiber, the two can interact through cross-phase modulation. It is shown that an interplay between the effects of group-velocity dispersion and cross-phase modulation can lead to optical wave breaking that manifests as rapid oscillations near the leading or the trailing side of the probe pulse. Qualitative features of this new kind of optical wave breaking are discussed, as well as the conditions under which it can be observed experimentally. The probe pulse can be compressed significantly by optimizing the initial delay between the pump and probe pulses even when the two pulses experience normal dispersion in the fiber.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.14.000137DOI Listing

Publication Analysis

Top Keywords

optical wave
12
wave breaking
12
cross-phase modulation
12
probe pulse
12
optical
5
pulse
5
breaking pulse
4
pulse compression
4
compression cross-phase
4
modulation optical
4

Similar Publications

Experimental realization of valley vortex states in water wave crystals.

Sci Bull (Beijing)

January 2025

Key Laboratory of Ocean Observation-Imaging Testbed of Zhejiang Province, Ocean College, Zhejiang University, Hangzhou 310058, China. Electronic address:

View Article and Find Full Text PDF

Singular topological edge states in locally resonant metamaterials.

Sci Bull (Beijing)

January 2025

Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea. Electronic address:

Band topology has emerged as a novel tool for material design across various domains, including photonic and phononic systems, and metamaterials. A prominent model for band topology is the Su-Schrieffer-Heeger (SSH) chain, which reveals topological in-gap states within Bragg-type gaps (BG) formed by periodic modification. Apart from classical BGs, another mechanism for bandgap formation in metamaterials involves strong coupling between local resonances and propagating waves, resulting in a local resonance-induced bandgap (LRG).

View Article and Find Full Text PDF

This paper presents an automated method for solving the initial structure of compact, high-zoom-ratio mid-wave infrared (MWIR) zoom lenses. Using differential analysis, the focal length variation process of zoom lenses under paraxial conditions is investigated, and a model for the focal power distribution and relative motion of three movable lens groups is established. The particle swarm optimization (PSO) algorithm is introduced into the zooming process analysis, and a program is developed in MATLAB to solve for the initial structure.

View Article and Find Full Text PDF

Diagnostic Cut-Off Values Based on Lipid Layer Pattern for Dry Eye Disease Subtypes Assessment.

J Clin Med

January 2025

GI-2092-Optometry, Departamento de Física Aplicada (Área de Optometría), Universidade de Santiago de Compostela, Campus Vida s/n, 15701 Santiago de Compostela, Spain.

: The aim of the present study was to establish a cut-off value of the Lipid Layer Pattern (LLP) between participants with different subtypes of Dry Eye Disease (DED) including Deficient Dry Eye (ADDE), Evaporative Dry Eye (EDE), and Mixed Dry Eye (MDE). : 240 participants diagnosed with DED according to the Tear Film and Ocular Surface Society in the Dry Eye Workshop II guidelines were included in the study. Tear Meniscus Height (TMH) using the Tearscope illumination and Meibomian Gland Loss Area (MGLA) using the Keratograph 5M were assessed to categorize the participants into an ADDE group, EDE group, or MDE group.

View Article and Find Full Text PDF

Background: High-velocity, low-amplitude (HVLA) manipulation is a common manual therapy technique used for treating pain and musculoskeletal dysfunction. An audible manipulation sound is commonly experienced by patients who undergo HVLA manipulation; however, there is little known about the effects and clinical relevance of the audible manipulation sound on cortical output and the autonomic nervous system. This study aimed to identify the immediate impact of the audible manipulation sound on brainwave activity and pupil diameter in asymptomatic subjects following an HVLA cervical manipulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!