Physiological role of RsgA in ribosome biosynthesis.

Nucleic Acids Symp Ser (Oxf)

Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan.

Published: May 2010

RsgA is a unique GTP hydrolytic protein, in which the GTPase activity is significantly enhanced by the small ribosomal subunit. Depletion of RsgA causes slow cell growth as well as defects in the subunit assembly of the ribosome and the 16S rRNA processing, suggesting its involvement in the maturation of the small subunit. Several antibiotics bound to the decoding center of the small subunit inhibited the ribosome-dependent GTPase activity of RsgA. Our recent study using chemical modification indicates that the binding of RsgA induces conformational changes around the A site, P site, and helix 44. These results suggest that RsgA is involved in the maturation step of the decoding center of the small subunit of ribosome. Here, we also show a physiological role of RsgA under stress condition.

Download full-text PDF

Source
http://dx.doi.org/10.1093/nass/nrp154DOI Listing

Publication Analysis

Top Keywords

small subunit
12
physiological role
8
role rsga
8
gtpase activity
8
decoding center
8
center small
8
rsga
7
subunit
5
rsga ribosome
4
ribosome biosynthesis
4

Similar Publications

Elucidating the roles of voltage sensors in Na1.9 activation and inactivation through a spider toxin.

Biochim Biophys Acta Gen Subj

January 2025

The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life sciences, Hunan Normal University, Changsha, China; Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China. Electronic address:

The gating process of voltage-gated sodium (Na) channels is extraordinary intrinsic and involves numerous factors, such as voltage-sensing domain (VSD), the N-terminus and C-terminus, and the auxiliary subunits. To date, the gating mechanism of Na channel has not been clearly elucidated. Na1.

View Article and Find Full Text PDF

TP53 mutations and MDM2 polymorphisms in breast and ovarian cancers: amelioration by drugs and natural compounds.

Clin Transl Oncol

January 2025

Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.

Globally, breast and ovarian cancers are major health concerns in women and account for significantly high cancer-related mortality rates. Dysregulations and mutations in genes like TP53, BRCA1/2, KRAS and PTEN increase susceptibility towards cancer. Here, we discuss the impact of mutations in the key regulatory gene, TP53 and polymorphisms in its negative regulator MDM2 which are reported to accelerate cancer progression.

View Article and Find Full Text PDF

Novel archaeal ribosome dimerization factor facilitating unique 30S-30S dimerization.

Nucleic Acids Res

January 2025

Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.

Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress.

View Article and Find Full Text PDF

The WRKY70 transcription factor (TF) was reported to play an important role in the salt stress response mechanism of in our previous research, and we also produced several overexpression (OEXs) and RNAi suppression (REXs) × lines. In order to further compare the photosynthetic and physiological characteristics of NT (non-transgenic line) and transgenic lines under salt stress, the dynamic phenotypic change, Na and K content in leaf and root tissues, superoxide dismutase (SOD) and peroxidase (POD) activity, malondialdehyde (MDA) content, chlorophyll content (Chl), photosynthesis parameters (net photosynthetic rate, P; stomatal conductance, Gs; intercellular CO concentration, C; transpiration rate, T), chlorophyll fluorescence parameters (electron transport rate, ETR; maximum photochemical efficiency of photosystem II (PSII), F/F; actual efficiency of PSII, Φ; photochemical quenching coefficient, q; non-photochemical quenching, NPQ; the photosynthetic light-response curves of Φ and ETR) and RNA-seq of NT, OEX and REX lines were detected and analyzed. The phenotypic observation, MDA content and Chl detection results indicate that the stress damage of REXs was less severe than that of NT and OEX lines under salt stress.

View Article and Find Full Text PDF

DNA gyrase is a bacterial type IIA topoisomerase that can create temporary double-stranded DNA breaks to regulate DNA topology and an archetypical target of antibiotics. The widely used quinolone class of drugs use a water-metal ion bridge in interacting with the GyrA subunit of DNA gyrase. Zoliflodacin sits in the same pocket as quinolones but interacts with the GyrB subunit and also stabilizes lethal double-stranded DNA breaks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!