We designed and synthesized a nucleoside derivative in which the nucleobase is replaced with acridone. The nucleoside derivative was incorporated into an oligodeoxyribonucleotide (ODN), and its influence on the stability of ODN hybrids and its fluorescent properties in a DNA duplex were measured by thermodynamic analysis and fluorescent spectroscopy. These results showed that the acridonyl group could distinguish the type of nucleobase paired from fluorescent intensity, although the hybrid stability did not depend significantly on the types of nucleobases paired.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/nass/nrp069 | DOI Listing |
Chem Sci
December 2024
Advanced Technology Research Institute (Jinan), Beijing Institute of Technology Jinan 250300 China
Elastomers are of great significance in developing smart materials for information encryption, and their unique self-healing and highly flexible properties provide innovative solutions to enhance security and anti-counterfeiting effectiveness. However, challenges remain in the multifunctional combination of mechanical properties, self-healing, degradability, and luminescence of these materials. Herein, a chemodynamic covalent adaptable network (CCAN)-induced robust, self-healing, and degradable fluorescent elastomer is proposed.
View Article and Find Full Text PDFFront Pediatr
December 2024
Department of Endocrinology, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.
Context: Type 2 diabetes (DM2) is an emerging disease in the pediatric population. DM2 is associated with metabolic-associated fatty liver disease (MAFLD). High-density lipoproteins (HDLs) are lipoproteins that are believed to have atheroprotective properties that reduce the risk of cardiovascular disease (CVD).
View Article and Find Full Text PDFJ Fluoresc
January 2025
The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, Key Laboratory of Chemistry of New Material of Functional Inorganic Composites, School of Chemical Engineering, Xi'an University, Xi'an, Shaanxi, China.
Methylene blue (MB) contamination has become a significant environmental issue due to its widespread presence in industrial effluents, posing serious threats to ecosystems and human health. As a result, there is an urgent need for the development of novel adsorbent materials that can effectively remove these pollutants from water sources. In this context, the present study focuses on the design and synthesis of two coordination polymers (CPs) containing Zn(II) and Mn(II), namely, {[Mn(L)(tib)]·4HO} (1) and [Zn(L)(3,5-bibp)] (2), using a combined-ligand approach under solvothermal conditions.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Institute of Chemical Technology, Matunga, Mumbai, India.
This study introduces an innovative approach to high-resolution latent fingerprint detection using carbon quantum dots (CQDs) biosynthesized from spent coffee grounds, enhanced with nitrogen doping. Conventional fingerprinting methods frequently use hazardous chemicals and are costly, highlighting the need for eco-friendly, affordable alternatives that preserve detection quality. The biosynthesized nitrogen-doped CQDs exhibit strong photoluminescence and high stability, offering a sustainable, effective alternative for fingerprint imaging.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut branch, Assiut, 71524, Egypt.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!