At present, six groups of chronic pulmonary hypertension (PH) are described. Among these, group 1 (and 1') comprises a group of diverse diseases termed pulmonary arterial hypertension (PAH) that have several pathophysiological, histological, and prognostic features in common. PAH is a particularly severe and progressive form of PH that frequently leads to right heart failure and premature death. The diagnosis of PAH must include a series of defined clinical parameters, which extend beyond mere elevations in pulmonary arterial pressures and include precapillary PH, pulmonary hypertensive arteriopathy (usually with plexiform lesions), slow clinical onset (months or years), and a chronic time course (years) characterized by progressive deterioration. What appears to distinguish PAH from other forms of PH is the severity of the arteriopathy observed, the defining characteristic of which is "plexogenic arteriopathy." The pathogenesis of this arteriopathy remains unclear despite intense investigation in a variety of animal model systems. The most commonly used animal models ("classic" models) are rodents exposed to either hypoxia or monocrotaline. Newer models, which involve modification of classic approaches, have been developed that exhibit more severe PH and vascular lesions, which include neointimal proliferation and occlusion of small vessels. In addition, genetically manipulated mice have been generated that have provided insight into the role of specific molecules in the pulmonary hypertensive process. Unfortunately, at present, there is no perfect preclinical model that completely recapitulates human PAH. All models, however, have provided and will continue to provide invaluable insight into the numerous pathways that contribute to the development and maintenance of PH. Use of both classic and newly developed animal models will allow continued rigorous testing of new hypotheses regarding pathogenesis and treatment. This review highlights progress that has been made in animal modeling of this important human condition.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00217.2009DOI Listing

Publication Analysis

Top Keywords

animal models
12
pulmonary arterial
12
arterial hypertension
8
pulmonary hypertensive
8
pulmonary
6
animal
5
pah
5
models
5
models pulmonary
4
hypertension hope
4

Similar Publications

Background: Shenfu injection (SFI), derived from a traditional Chinese medicine (TCM) prescription, is an effective drug for the treatment of sepsis-induced myocardial injury (SIMI) with good efficacy, but its exact therapeutic mechanism remains unclear.

Methods: SwissTargetPrediction and GeneCards database were used to obtain relevant targets for SFI and SIMI. STRING 11.

View Article and Find Full Text PDF

Tail Anchored protein insertion mediated by CAML and TRC40 links to neuromuscular function in mice.

PLoS Genet

January 2025

Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.

Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.

View Article and Find Full Text PDF

Protein supply to ruminants relies mainly on the flow of microbial crude protein (MCP) from the rumen, which is commonly assumed to primarily depend on energy supply. This study evaluated this assumption with recent data and tested if ruminally fermented organic matter (FOM) was a better predictor of MCP flow than total-tract digestible organic matter (DOM) and if more variables could improve the prediction of MCP flow. A previously published data set was extended by additional studies resulting in a data set of 139 studies including 407 treatment means, typical to Central European rations.

View Article and Find Full Text PDF

The body weight-based thrombolytic medication strategy in clinical trials shows critical defects in recanalization rate and post-thrombolysis hemorrhage. Methods for perceiving thrombi heterogeneity of thrombolysis resistance is urgently needed for precise thrombolysis. Here, we revealed the relationship between the thrombin heterogeneity and the thrombolysis resistance in thrombi and created an artificial biomarker-based nano-patrol system with robotic functional logic to perceive and report the thrombolysis resistance of thrombi.

View Article and Find Full Text PDF

Biomimetic wrinkled prebiotic microspheres with enhanced intestinal retention for hyperphosphatemia and vascular calcification.

Sci Adv

January 2025

Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.

It is urgent for patients with chronic kidney disease (CKD) to develop a robust and facile therapy for effective control of serum phosphate and reasonable regulation of gut microbiota, which are aiming to prevent cardiovascular calcification and reduce cardiovascular complications. Here, bioinspired by intestinal microstructures, we developed biomimetic wrinkled prebiotic-containing microspheres with enhanced intestinal retention and absorption for reducing hyperphosphatemia and vascular calcification of CKD model rats. The resultant CSM@5 microspheres exhibited favorable phosphate binding capacity in vitro and could effectively reduce serum concentration of phosphorous in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!