This study evaluates the bleaching efficiency of enzymatically scoured linen fabrics using a combined laccase-hydrogen peroxide bleaching process with and without ultrasonic energy, with the goal of obtaining fabrics with high whiteness levels, well preserved tensile strength and higher dye uptake. The effect of the laccase enzyme and the combined laccase-hydrogen peroxide bleaching process with and without ultrasound has been investigated with regard to whiteness value, tensile strength, dyeing efficiency and dyeing kinetics using both reactive and cationic dyes. The bleached linen fabrics were characterized using X-ray diffraction and by measuring tensile strength and lightness. The dyeing efficiency and kinetics were characterized by measuring dye uptake and colour fastness. The results indicated that ultrasound was an effective technique in the combined laccase-hydrogen peroxide bleaching process of linen fabrics. The whiteness values expressed as lightness of linen fabrics is enhanced by using ultrasonic energy. The measured colour strength values were found to be slightly better for combined laccase-hydrogen peroxide/ultrasound-assisted bleached fabrics than for combined laccase-hydrogen peroxide for both reactive and cationic dyes. The fastness properties of the fabrics dyed with reactive dye were better than those obtained when using cationic dye. The time/dye uptake isotherms were also enhanced when using combined laccase-hydrogen peroxide/ultrasound-assisted bleached fabric, which confirms the efficiency of ultrasound in the combined oxidative bleaching process. The dyeing rate constant, half-time of dyeing and dyeing efficiency have been calculated and discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultsonch.2009.08.007 | DOI Listing |
Ultrason Sonochem
July 2014
CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; 3B's Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio de Barco, 4806-909 Taipas, Guimarães, Portugal. Electronic address:
The potential of ultrasound-assisted technology has been demonstrated by several laboratory scale studies. However, their successful industrial scaling-up is still a challenge due to the limited pilot and commercial sonochemical reactors. In this work, a pilot reactor for laccase-hydrogen peroxide cotton bleaching assisted by ultrasound was scaled-up.
View Article and Find Full Text PDFUltrason Sonochem
March 2014
IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
The main goal of this work is to develop a novel and environmental-friendly technology for cotton bleaching with reduced processing costs. This work exploits a combined laccase-hydrogen peroxide process assisted by ultrasound. For this purpose, specific reactors were studied, namely ultrasonic power generator type K8 (850 kHz) and ultrasonic bath equipment Ultrasonic cleaner USC600TH (45 kHz).
View Article and Find Full Text PDFUltrason Sonochem
February 2010
National Research Centre, Textile Research Division, Cairo, Egypt.
This study evaluates the bleaching efficiency of enzymatically scoured linen fabrics using a combined laccase-hydrogen peroxide bleaching process with and without ultrasonic energy, with the goal of obtaining fabrics with high whiteness levels, well preserved tensile strength and higher dye uptake. The effect of the laccase enzyme and the combined laccase-hydrogen peroxide bleaching process with and without ultrasound has been investigated with regard to whiteness value, tensile strength, dyeing efficiency and dyeing kinetics using both reactive and cationic dyes. The bleached linen fabrics were characterized using X-ray diffraction and by measuring tensile strength and lightness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!