To study the synergistic effects of hollow structure and surface fluorination on the photoactivity of TiO(2), TiO(2) hollow microspheres were synthesized by a hydrolysis-precipitate method using sulfonated polystyrene (PS) as templates and tetrabutylorthotitanate (TBOT) as precursor, and then calcined at 500 degrees C for 2h. The calcined samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N(2) sorption. Photocatalytic activity was evaluated using reactive brilliant red X3B, an anionic organic dye, as a model pollutant in water. The results show that the photocatalytic activity of TiO(2) hollow microspheres is significantly higher than that of TiO(2) nanoparticles prepared in the same experimental conditions. At pH 7 and 3, the apparent rate constants of the former exceed that of the latter by a factor of 3.38 and 3.15, respectively. After surface fluorination at pH 3, the photoactivity of hollow microspheres and nanoparticles further increases for another 1.61 and 2.19 times, respectively. The synergistic effect of surface fluorination and hollow structure can also be used to prepare other highly efficient photocatalyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2009.08.119 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China.
Silicone rubber (SR) holds significant potential for everyday wearable devices due to its inherent sweat resistance and flexibility. However, its broader applicability is constrained by poor oil resistance and a suboptimal slip performance. In this study, we developed an SR with durable oil resistance and enhanced slip properties by forming a covalently bonded barrier layer on its surface through a one-step in situ fluorination reaction using F/N.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, University of Patras, Patras 26504, Greece.
Energy-efficient separation of light alkanes from alkenes is considered as one of the most important separations of the chemical industry today due to the high energy penalty associated with the applied conventional cryogenic technologies. This study introduces fluorine-doped activated carbon adsorbents, where elemental fluorine incorporation into the carbon matrix plays a unique role in achieving high ethane selectivity. This enhanced selectivity arises from specific interactions between surface-doped fluorine atoms and ethane molecules, coupled with porosity modulation.
View Article and Find Full Text PDFBeijing Da Xue Xue Bao Yi Xue Ban
February 2025
Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
Objective: To study the durability of the anti-demineralization effects of fluoride varnish after being applied to dental root surfaces.
Methods: Coronal and radicular dentin samples were prepared from extracted human teeth. Duraphat (DP) was applied to the dentine surfaces to form a protective film.
J Am Chem Soc
January 2025
School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
Ferroelectric nematic (N) liquid crystals combine liquid-like fluidity and orientational order of conventional nematics with macroscopic electric polarization comparable in magnitude to solid-state ferroelectric materials. Here, we present a systematic study of twenty-seven homologous materials with various fluorination patterns, giving new insight into the molecular origins of spontaneous polar ordering in fluid ferroelectric nematics. Beyond our initial expectations, we find the highest stability of the N phase to be in materials with specific fluorination patterns rather than the maximal fluorination, which might be expected based on simple models.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France.
Dental caries is a widespread issue impacting global oral health. White spot lesions, the earliest stage of caries, compromise enamel's esthetics and integrity. Remineralization therapies, both fluoride and non-fluoride based, aim to restore enamel, but limited comparative data exist on their effects on lesion depth and microhardness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!