In eukaryotes, the ribosomal DNA (rDNA) consists of long tandem repeat arrays. These repeated genes are unstable because homologous recombination between them results in copy number loss. To maintain high copy numbers, yeast has an amplification system that works through a pathway involving the replication fork barrier site and unequal sister chromatid recombination. In this study, we show that an active replication origin is essential for amplification, and the amplification rate correlates with origin activity. Moreover, origin activity affects the levels of extrachromosomal rDNA circles (ERC) that are thought to promote aging. Surprisingly, we found that reduction in ERC level results in shorter life span. We instead show that life span correlates with rDNA stability, which is preferentially reduced in mother cells, and that episomes can induce rDNA instability. These data support a model in which rDNA instability itself is a cause of aging in yeast.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molcel.2009.07.012 | DOI Listing |
Plant Cell
December 2024
Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.
A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.
View Article and Find Full Text PDFmBio
January 2025
Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
Unlabelled: Bacterial typing at whole-genome scales is now feasible owing to decreasing costs in high-throughput sequencing and the recent advances in computation. The unprecedented resolution of whole-genome typing is achieved by genotyping the variable segments of bacterial genomes that can fluctuate significantly in gene content. However, due to the transient and hypervariable nature of many accessory elements, the value of the added resolution in outbreak investigations remains disputed.
View Article and Find Full Text PDFCJC Open
January 2025
Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Québec, Canada.
Background: This study analyzed trends in the frequencies and rates of natural deaths associated with sport and recreation activities in Québec, Canada, from January 2006 to December 2019, and investigated their etiology and characteristics.
Methods: This descriptive retrospective study utilized data from coroner reports, as well as autopsy and police reports. Activity-specific incidence rates were calculated using participation data from the (ÉBARS) and Canadian census population data.
Cureus
December 2024
Medicine, Griffith University, Gold Coast, AUS.
The cystic artery is a critical anatomical landmark in both laparoscopic and open cholecystectomy. This report presents a unique case involving two rare anatomical variations: double cystic arteries, along with a superficial branch originating from the superior mesenteric artery (SMA) - a previously unreported combination with significant clinical and surgical implications. Unlike earlier studies, this research provides detailed anatomical and embryological insights supported by high-quality imaging and illustrations to guide surgeons in recognizing and managing this novel variation.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, United States.
Introduction: The immune compartment within fetal chorionic villi is comprised of fetal Hofbauer cells (HBC) and invading placenta-associated maternal monocytes and macrophages (PAMM). Recent studies have characterized the transcriptional profile of the first trimester (T1) placenta; however, the phenotypic and functional diversity of chorionic villous immune cells at term (T3) remain poorly understood.
Methods: To address this knowledge gap, immune cells from human chorionic villous tissues obtained from full-term, uncomplicated pregnancies were deeply phenotyped using a combination of flow cytometry, single-cell RNA sequencing (scRNA-seq, CITE-seq) and chromatin accessibility profiling (snATAC-seq).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!