Ficus carica L.: Metabolic and biological screening.

Food Chem Toxicol

REQUIMTE/Department of Pharmacognosy, Porto University, R. Aníbal Cunha 164, Porto 4050-047, Portugal.

Published: November 2009

Ficus carica L. is one of the earliest cultivated fruit trees. In this work, metabolite profiling was performed on the leaves, pulps and peels of two Portuguese white varieties of F. carica (Pingo de Mel and Branca Tradicional). Phenolics and organic acids profiles were determined by HPLC/DAD and HPLC/UV, respectively. All samples presented a similar phenolic profile composed by 3-O- and 5-O-caffeoylquinic acids, ferulic acid, quercetin-3-O-glucoside, quercetin-3-O-rutinoside, psoralen and bergapten. 3-O-Caffeoylquinic acid and quercetin-3-O-glucoside are described for the first time in this species. Leaves' organic acids profile presented oxalic, citric, malic, quinic, shikimic and fumaric acids, while in pulps and peels quinic acid was absent. The antioxidant potential of the different plant parts was checked. All materials exhibited activity against DPPH and nitric oxide radicals in a concentration-dependent way. However, only the leaves presented capacity to scavenge superoxide radical. Leaves were always the most effective part, which seems to be related with phenolics compounds. Additionally, acetylcholinesterase inhibitory capacity was evaluated, but no effect was observed. Antimicrobial potential was also assessed against several bacterial species, although no activity was noticed. This is the first study comparing the chemical composition and biological potential of F. carica pulps, peels and leaves.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2009.09.004DOI Listing

Publication Analysis

Top Keywords

pulps peels
12
ficus carica
8
organic acids
8
acid quercetin-3-o-glucoside
8
carica metabolic
4
metabolic biological
4
biological screening
4
screening ficus
4
carica earliest
4
earliest cultivated
4

Similar Publications

A new valorization pathway based on solvent fractionation was applied to kraft lignin, a major by-stream of the pulping industry, to extract a soluble lignin intermediate featuring an improved structural homogeneity, a low molecular weight, and a high content of phenolic hydroxyl and carboxylic acid groups to serve as a substitute of the nonrenewable polyacids in the formulation of alkyd resins, a dominant material used in the production of anticorrosion surface coatings. Herein, softwood kraft lignin was mixed in a low-cost green solvent, aqueous ethanol, prepared at different ratios, at room temperature to generate a soluble fraction of a low of ≤2200 g mol and an insoluble fraction of a high of ≥3950 g mol of lignin. The best combination of yields and molecular weights of soluble lignin (16-36% yield, 1740-1890 g mol) was attained using 50-80 vol % ethanol in fractionation.

View Article and Find Full Text PDF

This study aimed to compare the effects of incorporating fermented feed into daily diets on the slaughter performance, meat quality, and flavor compounds of 120 domestic chickens over a 140-day period. A total of five groups (n = 24), including the control group (CK) of the Guangxi Partridge chickens received a standard base diet. The other four groups were provided with pellets that had been added with 10% fermented banana peel (Pe-10), 20% fermented banana peel (Pe-20), 10% fermented banana pulp residue (Pu-10), and 20% fermented banana pulp residue (Pu-20).

View Article and Find Full Text PDF

Sodium humate (SH) is the sodium salt of humic acid. Our previous research has demonstrated that SH has the ability to enhance the levels of total flavonoids in various parts of lemons, including the leaves, peels, pulps, and seeds, thereby improving the quality of lemons. In the current study, the regulation effect of SH on the biosynthesis and content of lemon flavonoid compounds was examined using transcriptome sequencing technology and flavonoid metabolomic analysis.

View Article and Find Full Text PDF

Utilising agricultural byproducts specifically fruit wastes for bioethanol production offers a promising approach to sustainable energy production and waste mitigation. This approach focuses on assessing the biochemical composition of fruit wastes, particularly their sugar content, as a key aspect of bioethanol production. This study evaluates the potential of pineapple, mango, pawpaw and watermelon fruit wastes for bioethanol production, highlighting the substantial organic waste generated during fruit processing stages such as peeling and pulping.

View Article and Find Full Text PDF
Article Synopsis
  • * A total of 69 metabolites were identified, with Beauregard cultivar having the highest sugar content, while Sahrawy cultivar had a greater concentration of alcohols and organic acids.
  • * The research revealed that air-frying significantly increased sugar, alcohol, and organic acid levels, making it the best processing method for retaining essential nutrients and metabolites like β-carotene and phenolics.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!