ARX mutations are associated with variable clinical phenotypes. We report a new neurodegenerative phenotype associated with a known ARX mutation and causing early abnormal neurodevelopment, a complex movement disorder, and early infantile epileptic encephalopathy with a suppression-burst pattern (Ohtahara syndrome). A male infant presented at age 5 months with a dyskinetic movement disorder, which was initially diagnosed as infantile spasms. Clinical deterioration was accompanied by progressive cortical atrophy with a reduction in white matter volume and resulting in death in the first year of life; such a rapidly progressive and severe phenotype has not previously been described. ARX mutation testing should be undertaken in children aged less than 1 year with Ohtahara syndrome and a movement disorder, and in infants with unexplained neurodegeneration, progressive white matter loss, and cortical atrophy.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1469-8749.2009.03470.xDOI Listing

Publication Analysis

Top Keywords

movement disorder
16
ohtahara syndrome
12
dyskinetic movement
8
arx mutation
8
cortical atrophy
8
white matter
8
novel arx
4
arx phenotype
4
phenotype rapid
4
rapid neurodegeneration
4

Similar Publications

Modulation of Intestinal Inflammation and Protection of Dopaminergic Neurons in Parkinson's Disease Mice through a Probiotic Formulation Targeting NLRP3 Inflammasome.

J Neuroimmune Pharmacol

January 2025

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.

Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.

View Article and Find Full Text PDF

Background: Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder, with balance instability as a feature of the disease. Balance instability often manifests before the onset of obvious ataxic symptoms in patients. However, current clinical scales exhibit limited sensitivity in characterizing changes in pre-ataxic patients.

View Article and Find Full Text PDF

Background: Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy of ventral intermediate (Vim) nucleus is useful to treat drug-resistant tremor-dominant Parkinson's disease (TdPD), but tremor relapse may occur. Predictors of relapse have been poorly investigated so far.

Objective: The aim of this study is to evaluate the role of clinico-demographic, procedural, and neuroradiological variables in determining clinical response, relapse, and adverse events (AEs) in TdPD after MRgFUS Vim-thalamotomy.

View Article and Find Full Text PDF

Background: Central synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), involve alpha-synuclein accumulation and dopaminergic cell loss in the substantia nigra (SN) and locus coeruleus (LC). Pure autonomic failure (PAF), a peripheral synucleinopathy, often precedes central synucleinopathies.

Objectives: To assess early brain involvement in PAF using neuromelanin-sensitive magnetic resonance imaging (NM-MRI) and fluorodopa-positron emission tomography (FDOPA-PET), and to determine whether PAF patients with a high likelihood ratio (LR) for conversion to a central synucleinopathy exhibit reduced NM-MRI contrast in the LC and SN compared with controls and low-LR patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!