Penicillin binding proteins (PBPs) are involved in the biosynthesis of the peptidoglycan layer constitutive of the bacterial envelope. They have been targeted for more than half a century by extensively derived molecular scaffolds of penicillins and cephalosporins. Streptococcus pneumoniae resists the antibiotic pressure by inducing highly mutated PBPs that can no longer bind the beta-lactam containing agents. To find inhibitors of PBP2x from Streptococcus pneumoniae (spPBP2x) with novel chemical scaffold so as to circumvent the resistance problems, a hierarchical virtual screening procedure was performed on the NCI database containing approximately 260000 compounds. The calculations involved ligand-based pharmacophore mapping studies and molecular docking simulations in a homology model of spPBP2x from the highly resistant strain 5204. A total of 160 hits were found, and 55 were available for experimental tests. Three compounds harboring two novel chemical scaffolds were identified as inhibitors of the resistant strain 5204-spPBP2x at the micromolar range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm900625q | DOI Listing |
BMC Infect Dis
January 2025
Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, SE21428, Malmö, Sweden.
Background: Community-acquired pneumonia (CAP) was one of the most common causes of death in the European Union in 2017. Severity and mortality of CAP increase with age and an aging European population will require increased planning for prevention, control, and management of CAP. The purpose of this study was to provide an updated population-based estimate of the incidence of CAP requiring hospitalization in Northern Europe.
View Article and Find Full Text PDFVaccine
January 2025
Department of Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, United States.
The development of safe and effective mucosal vaccines are hampered by safety concerns associated with adjuvants or live attenuated microbes. We previously demonstrated that targeting antigens to the human-Fc-gamma-receptor-I (hFcγRI) eliminates the need for adjuvants, thereby mitigating safety concerns associated with the mucosal delivery of adjuvant formulated vaccines. Here we evaluated the role of the route of immunization in the mucosal immunity elicited by the hFcγRI-targeted vaccine approach.
View Article and Find Full Text PDFS Afr J Infect Dis
December 2024
Division of Medical Microbiology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
Background: Delayed or incorrect treatment of meningitis may result in adverse patient outcomes. However, laboratory testing in resource-limited settings is often limited to conventional diagnostic methods. We explored the utility of syndromic molecular assays for diagnosis.
View Article and Find Full Text PDFEur J Pediatr
January 2025
Pediatric Unit, Meyer Children's Hospital IRCCS, Via Gaetano Pieraccini 24, 50139, Florence, Italy.
Among acute mastoiditis (AM) complications, cerebral venous sinus thrombosis (CVST) is particularly severe, leading to increased intracranial pressure and potential neurological sequelae. Predicting the development of such complications is challenging. The aims of the present study were to evaluate the incidence, clinical characteristics, and risk factors for the development of CVST in AM.
View Article and Find Full Text PDFPLoS One
January 2025
Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh.
Streptococcus pneumoniae (SPN) is a significant pathogen causing pneumonia and meningitis, particularly in vulnerable populations like children and the elderly. Available pneumonia vaccines have limitations since they only cover particular serotypes and have high production costs. The emergence of antibiotic-resistant SPN strains further underscores the need for a new, cost-effective, broad-spectrum vaccine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!