The evaluation of skin irritation potential of chemicals is essential to secure the safety of individuals exposed to several substances designed for industrial, pharmaceutical or cosmetic use. Until recently, preclinical safety assessment of chemicals was largely based on animal experiments. Ethical concerns and the limited value of animal models in evaluating human skin irritation potential resulted in the development of alternative in vitro methods, such as EpiDerm, EPISKIN or SkinEthic, to assess irritation, i.e. cell cultures and human epidermis models. International organizations like the European Centre for the Validation of Alternative Methods (ECVAM) promotes and monitors the development of nonanimal tests. Human patch tests and use tests also provide an opportunity to identify substances with significant skin irritation potential without recourse to the use of animals. These tests are useful to assess skin irritation potential of cosmetics and detergents.
Download full-text PDF |
Source |
---|
Pharmaceutics
December 2024
Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan.
: Laurocapram (Azone) attracted attention 40 years ago as a compound with the highest skin-penetration-enhancing effect at that time; however, its development was shelved due to strong skin irritation. We had already prepared and tested an ante-enhancer (IL-Azone), an ionic liquid (IL) with a similar structure to Azone, consisting of ε-caprolactam and myristic acid, as an enhancer candidate that maintains the high skin-penetration-enhancing effect of Azone with low skin irritation. In the present study, fatty acids with different carbon numbers (caprylic acid: C8, capric acid: C10, lauric acid: C12, myristic acid: C14, and oleic acid: C18:1) were selected and used with ε-caprolactam to prepare various IL-Azones in the search for a more effective IL-Azone.
View Article and Find Full Text PDFPharmaceutics
December 2024
Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasília 70910-900, Brazil.
: This study aimed to evaluate the safety and efficacy of chitosan-based bioadhesive films for facilitating the topical delivery of curcumin in skin cancer treatment, addressing the pharmacokinetic limitations associated with oral administration. : The films, which incorporated curcumin, were formulated using varying proportions of chitosan, polyvinyl alcohol, Poloxamer 407, and propylene glycol. These films were assessed for stability, drug release, in vitro skin permeation, cell viability (with and without radiotherapy), and skin irritation.
View Article and Find Full Text PDFPharmaceutics
December 2024
School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
Traumatic hemorrhage and infection are major causes of mortality in wounds caused by battlefield injuries, hospital procedures, and traffic accidents. Developing a multifunctional nano-drug capable of simultaneously controlling bleeding, preventing infection, and promoting wound healing is critical. This study aimed to design and evaluate a nanoparticle-based solution to address these challenges effectively.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
UCIBIO-Applied Molecular Biosciences Unit, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
: An emerging practice within the concept of circular beauty involves the upcycling of agro-industrial by-products. Cork processing, for instance, yields by-products like cork powder, which presents an opportunity to create value-added cosmetic ingredients. Building upon our previous research, demonstrating the antioxidant potential of hydroalcoholic extracts derived from two distinct cork powders (P0 and P1), in this work, aqueous extracts were prepared and analyzed.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Department of Orthopedic Surgery, Anam Hospital, Korea University College of Medicine, 73 Goryeodae-ro Seongbuk-gu, Seoul 02841, Republic of Korea.
Distal tibia fractures are high-energy injuries characterized by a mismatch between standard plate designs and the patient's specific anatomical bone structure, which can lead to severe soft tissue damage. Recent advancements have focused on the development of customized metal plates using three-dimensional (3D) printing technology. However, 3D-printed metal plates using titanium alloys have not incorporated a locking system due to the brittleness of these alloys.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!