Ontogeny of tyrosine hydroxylase concentration in locus coeruleus of newborn rats: long-term effects of RU24722.

J Neurochem

Laboratoire de Neuropharmacologie Moléculaire (CNRS UMR105), Faculté de Médecine Alexis Carrel, Lyon, France.

Published: September 1990

The ontogenetic variations of tyrosine hydroxylase (TH) have been studied in locus coeruleus of developing rats. During the first 2 weeks after birth, a large increase in TH content (6.04-23.99 TH units) in the noradrenergic structure was observed, followed by a period of progressive increase of the protein concentration (42 TH units in adult rats). The expression of TH was studied in the same ontogenetic period after treatment by RU24722 (20 mg/kg, i.p.). The long-term increase in TH concentration produced by the drug was found to follow ontogenetic variations. It becomes significant around the middle of the second week after birth and gradually increases until the 24th day of postnatal development, indicating a maturation of the mechanisms involved in the inducing effect.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.1990.tb04569.xDOI Listing

Publication Analysis

Top Keywords

tyrosine hydroxylase
8
locus coeruleus
8
ontogenetic variations
8
ontogeny tyrosine
4
hydroxylase concentration
4
concentration locus
4
coeruleus newborn
4
newborn rats
4
rats long-term
4
long-term effects
4

Similar Publications

Background: Remote ischemic conditioning (RIC) has been implicated in cross-organ protection in cerebrovascular disease, including stroke. However, the lack of a consensus protocol and controversy over the clinical therapeutic outcomes of RIC suggest an inadequate mechanistic understanding of RIC. The current study identifies RIC-induced molecular and cellular events in the blood, which enhance long-term functional recovery in experimental cerebral ischemia.

View Article and Find Full Text PDF

Animal personalities are stable, context-dependent behavioral differences. Associations between the personality of birds and polymorphisms in the dopamine receptor D4 (DRD4) gene have been repeatedly observed. In mammals, our understanding of the role of the dopamine (DA) system in higher cognitive functions and psychiatric disorders is improving, and we are beginning to understand the relationship between the neural circuits modulating the DA system and personality traits.

View Article and Find Full Text PDF

(), a parasitic intracellular protozoan, can establish a chronic infection in the host brain and cause significant neuropathology. The current study aimed to determine the role of Tyrosine Hydroxylase (TH), Dopamine Receptor D1 (D1R), Nuclear Receptor Related-1 (Nurr1), and Dopamine Transporter (DAT) expression in the neuroimmunopathogenesis of toxoplasmic encephalitis (TE) at 15, 30, 45, and 60 days after infection with . Additionally, the study investigated whether there was a correlation between the markers on these critical days, which had yet to be explored.

View Article and Find Full Text PDF

Objective: Progressive Supranuclear Palsy (PSP) is a severe neurodegenerative disease characterized by tangles of hyperphosphorylated tau protein and tufted astrocytes. Developing treatments for PSP is challenging due to the lack of disease models reproducing its key pathological features. This study aimed to model sporadic PSP-Richardson's syndrome (PSP-RS) using multi-donor midbrain organoids (MOs).

View Article and Find Full Text PDF

Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!