Using a 6 X 6 array of integrated quantum-well self-electro-optic-effect devices, we demonstrate an optically addressed spatial light modulator able to convert a visible, incoherent image into coherent infrared (IR) light. Depending on the IR wavelength used, the output is either a positive, binary-thresholded version of the input (bistable mode) or its linear, negative (self-linearized) mode. This device can also function as a dynamic bistable memory that can retain its internal state without power for times as long as 30 sec.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.13.000297DOI Listing

Publication Analysis

Top Keywords

spatial light
8
light modulator
8
self-electro-optic-effect devices
8
modulator optical
4
optical dynamic
4
dynamic memory
4
memory array
4
array self-electro-optic-effect
4
devices array
4
array integrated
4

Similar Publications

The compressibility of crystalline tetrabromophthalic anhydride (TBPA) and 1-ethyl-3-methylimidazolium nitrate (EMN) was studied based on density functional theory including dispersion interactions at pressures below 1 GPa. It is found for the first time that EMN demonstrates negative linear compressibility (NLC) up to ∼0.15 GPa, whereas TBPA shows significant NLC at pressures higher than ∼0.

View Article and Find Full Text PDF

Graphene has unique properties paving the way for groundbreaking future applications. Its large optical nonlinearity and ease of integration in devices notably makes it an ideal candidate to become a key component for all-optical switching and frequency conversion applications. In the terahertz (THz) region, various approaches have been independently demonstrated to optimize the nonlinear effects in graphene, addressing a critical limitation arising from the atomically thin interaction length.

View Article and Find Full Text PDF

Magneto-Photochemically Responsive Liquid Crystal Elastomer for Underwater Actuation.

ACS Appl Mater Interfaces

January 2025

Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101 Tampere, Finland.

The quest for small-scale, remotely controlled soft robots has led to the exploration of magnetic and optical fields for inducing shape morphing in soft materials. Magnetic stimulus excels when navigation in confined or optically opaque environments is required. Optical stimulus, in turn, boasts superior spatial precision and individual control over multiple objects.

View Article and Find Full Text PDF

Spatial omics shed light on the tumour organisation of glioblastoma.

Semin Cell Dev Biol

January 2025

Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia. Electronic address:

The glioblastoma tumour microenvironment is characterised by immense heterogeneity, with malignant and non-malignant cells that interact in a complex ecosystem. Emerging evidence suggests that the tumour microenvironment is key in facilitating rapid proliferation, invasion, migration and cancer cell survival, crucial for treatment resistance. Spatial omics technologies have enabled the molecular characterisation of regions or individual cells within their spatial context, providing previously unattainable insights into the complex organisation of the glioblastoma tumour microenvironment.

View Article and Find Full Text PDF

Elucidating the interaction between membrane proteins and antibodies requires whole-cell imaging at high spatiotemporal resolution. Lattice light-sheet (LLS) microscopy offers fast volumetric imaging but suffers from limited spatial resolution. DNA-based point accumulation for imaging in nanoscale topography (DNA-PAINT) achieves molecular resolution but is restricted to two-dimensional imaging owing to long acquisition times.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!