Performance of an optical packet switch with fixed wavelength converter arrays under bursty traffic.

Appl Opt

Faculty of Computer and Information Engineering, No. 45 Mailbox, Shanghai University of Electric Power 2103, Pingliang Road, Shanghai, 200090, China.

Published: September 2009

This paper focuses on the performance of a synchronous time-slotted optical packet switch. An optical packet switch with fixed wavelength converter arrays is proposed. The proposed node architecture uses shared fixed wavelength converter arrays and recirculation fiber delay lines to resolve optical packet collisions. To make full use of the fixed wavelength converter arrays and fiber delay lines, two control schemes are presented and studied. The packet loss probabilities of the proposed node architecture are evaluated in detail by simulation experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.48.004885DOI Listing

Publication Analysis

Top Keywords

optical packet
16
fixed wavelength
16
wavelength converter
16
converter arrays
16
packet switch
12
switch fixed
8
proposed node
8
node architecture
8
fiber delay
8
delay lines
8

Similar Publications

Influence of Photoemission Geometry on Timing and Efficiency in 4D Ultrafast Electron Microscopy.

Chemphyschem

January 2025

University of Minnesota Twin Cities, Chemical Engineering and Materials Science, 421 Washington Avenue SE, 55455, Minneapolis, UNITED STATES OF AMERICA.

Broader adoption of 4D ultrafast electron microscopy (UEM) for the study of chemical, materials, and quantum systems is being driven by development of new instruments as well as continuous improvement and characterization of existing technologies. Perhaps owing to the still-high barrier to entry, the full range of capabilities of laser-driven 4D UEM instruments has yet to be established, particularly when operated at extremely low beam currents (~fA). Accordingly, with an eye on beam stability, we have conducted particle tracing simulations of unconventional off-axis photoemission geometries in a UEM equipped with a thermionic-emission gun.

View Article and Find Full Text PDF
Article Synopsis
  • The study reveals that laser-assisted dynamic interference in electron spectra can be experimentally observed using attosecond pulse trains, demonstrating fine interference patterns smaller than the energy of individual laser photons.
  • Theoretical simulations align with experimental findings, utilizing methods like the time-dependent Schrödinger equation and strong-field approximation to support the results.
  • Further analysis emphasizes the significance of phase variations in electron wave packets, showing that the manipulation of electron behavior in the continuum is achievable through advanced multicolor laser techniques controlled at attosecond timescales.
View Article and Find Full Text PDF

Monochromatization of Electron Beams with Spatially and Temporally Modulated Optical Fields.

Phys Rev Lett

November 2024

Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague CZ-12116, Czech Republic.

Inelastic interaction between coherent light with constant frequency and free electrons enables periodic phase modulation of electron wave packets leading to periodic sidebands in the electron energy spectra. In this Letter, we propose a generalization of the interaction by considering linearly chirped electron wave packets interacting with chirped optical fields. We theoretically demonstrate that when matching the chirp parameters of the electron and light waves, the interaction leads to partial monochromatization of the electron spectra in one of the energy sidebands.

View Article and Find Full Text PDF

Ultrashort pulses can excite or ionize molecules and populate coherent electronic wave packets, inducing complex dynamics. In this Letter, we simulate the coupled electron-nuclear dynamics upon ionization to different electronic wave packets of (deuterated) benzene and fluoro-benzene molecules, quantum mechanically and in full dimensionality. In fluoro-benzene, the calculations unravel both interstate and intrastate quantum interferences that leave clear signatures of attochemistry and charge-directed dynamics in the shape of the autocorrelation function.

View Article and Find Full Text PDF

Optimal Floquet state engineering for large scale atom interferometers.

Nat Commun

November 2024

Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, UniversitéToulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062, Toulouse, France.

The effective control of atomic coherence with cold atoms has made atom interferometry an essential tool for quantum sensors and precision measurements. The performance of these interferometers is closely related to the operation of large wave packet separations. We present here a novel approach for atomic beam splitters based on the stroboscopic stabilization of quantum states in an accelerated optical lattice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!