We present a novel multi-compartment neuron co-culture microsystem platform for in vitro CNS axon-glia interaction research, capable of conducting up to six independent experiments in parallel for higher-throughput. We developed a new fabrication method to create microfluidic devices having both micro and macro scale structures within the same device through a single soft-lithography process, enabling mass fabrication with good repeatability. The multi-compartment microfluidic co-culture platform is composed of one soma compartment for neurons and six axon/glia compartments for oligodendrocytes (OLs). The soma compartment and axon/glia compartments are connected by arrays of axon-guiding microchannels that function as physical barriers to confine neuronal soma in the soma compartment, while allowing axons to grow into axon/glia compartments. OLs loaded into axon/glia compartments can interact only with axons but not with neuronal soma or dendrites, enabling localized axon-glia interaction studies. The microchannels also enabled fluidic isolation between compartments, allowing six independent experiments to be conducted on a single device for higher throughput. Soft-lithography using poly(dimethylsiloxane) (PDMS) is a commonly used technique in biomedical microdevices. Reservoirs on these devices are commonly defined by manual punching. Although simple, poor alignment and time consuming nature of the process makes this process not suitable when large numbers of reservoirs have to be repeatedly created. The newly developed method did not require manual punching of reservoirs, overcoming such limitations. First, seven reservoirs (depth: 3.5 mm) were made on a poly(methyl methacrylate) (PMMA) block using a micro-milling machine. Then, arrays of ridge microstructures, fabricated on a glass substrate, were hot-embossed against the PMMA block to define microchannels that connect the soma and axon/glia compartments. This process resulted in macro-scale reservoirs (3.5 mm) and micro-scale channels (2.5 microm) to coincide within a single PMMA master. A PDMS replica that served as a mold master was obtained using soft-lithography and the final PDMS device was replicated from this master. Primary neurons from E16-18 rats were loaded to the soma compartment and cultured for two weeks. After one week of cell culture, axons crossed microchannels and formed axonal only network layer inside axon/glia compartments. Axons grew uniformly throughout six axon/glia compartments and OLs from P1-2 rats were added to axon/glia compartments at 14 days in vitro for co-culture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774404 | PMC |
http://dx.doi.org/10.3791/1399 | DOI Listing |
Elife
May 2017
Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
Impairment of peripheral nerve function is frequent in neurometabolic diseases, but mechanistically not well understood. Here, we report a novel disease mechanism and the finding that glial lipid metabolism is critical for axon function, independent of myelin itself. Surprisingly, nerves of Schwann cell-specific mutant mice were unaltered regarding axon numbers, axonal calibers, and myelin sheath thickness by electron microscopy.
View Article and Find Full Text PDFLab Chip
September 2012
Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA.
Formation of myelin sheaths by oligodendrocytes (OLs) in the central nervous system (CNS) is essential for rapid nerve impulse conduction. Reciprocal signaling between axons and OLs orchestrates myelinogenesis but remains largely elusive. In this study, we present a multi-compartment CNS neuron-glia microfluidic co-culture platform.
View Article and Find Full Text PDFLab Chip
March 2010
Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
We describe a compartmentalized circular microfluidic platform that enables directed cell placement within defined microenvironments for the study of axon-glia interactions. The multi-compartment platform consists of independent units of radial microchannel arrays that fluidically isolate somal from axonal compartments. Fluidic access ports punched near the microchannels allow for direct pipetting of cells into the device.
View Article and Find Full Text PDFJ Vis Exp
September 2009
Department of Electrical and Computer Engineering, Texas A & M University.
We present a novel multi-compartment neuron co-culture microsystem platform for in vitro CNS axon-glia interaction research, capable of conducting up to six independent experiments in parallel for higher-throughput. We developed a new fabrication method to create microfluidic devices having both micro and macro scale structures within the same device through a single soft-lithography process, enabling mass fabrication with good repeatability. The multi-compartment microfluidic co-culture platform is composed of one soma compartment for neurons and six axon/glia compartments for oligodendrocytes (OLs).
View Article and Find Full Text PDFBiomed Microdevices
December 2009
Department of Electrical and Computer Engineering, College of Engineering, Texas A&M University, College Station, TX 77843-3128, USA.
This paper presents a circular microfluidic compartmentalized co-culture platform that can be used for central nervous system (CNS) axon myelination research. The microfluidic platform is composed of a soma compartment and an axon/glia compartment connected through arrays of axon-guiding microchannels. Myelin-producing glia, oligodendrocytes (OLs), placed in the axon/glia compartment, interact with only axons but not with neuronal somata confined to the soma compartment, reminiscent to in vivo situation where many axon fibres are myelinated by OLs at distance away from neuronal cell bodies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!