Ambient metals, elemental carbon, and wheeze and cough in New York City children through 24 months of age.

Am J Respir Crit Care Med

Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University College of Physicians and Surgeons, 630 W. 168th St, New York, NY 10032, USA.

Published: December 2009

Rationale: The effects of exposure to specific components of ambient fine particulate matter (PM(2.5)), including metals and elemental carbon (EC), have not been fully characterized in young children.

Objectives: To compare temporal associations among PM(2.5); individual metal constituents of ambient PM(2.5), including nickel (Ni), vanadium (V), and zinc (Zn); and EC and longitudinal reports of respiratory symptoms through 24 months of age.

Methods: Study participants were selected from the Columbia Center for Children's Environmental Health birth cohort recruited in New York City between 1998 and 2006. Respiratory symptom data were collected by questionnaire every 3 months through 24 months of age. Ambient pollutant data were obtained from state-operated stationary monitoring sites located within the study area. For each subject, 3-month average inverse-distance weighted concentrations of Ni, V, Zn, EC, and PM(2.5) were calculated for each symptom-reporting period based on the questionnaire date and the preceding 3 months. Associations between pollutants and symptoms were characterized using generalized additive mixed effects models, adjusting for sex, ethnicity, environmental tobacco smoke exposure, and calendar time.

Measurements And Main Results: Increases in ambient Ni and V concentrations were associated significantly with increased probability of wheeze. Increases in EC were associated significantly with cough during the cold/flu season. Total PM(2.5) was not associated with wheeze or cough.

Conclusions: These results suggest that exposure to ambient metals and EC from heating oil and/or traffic at levels characteristic of urban environments may be associated with respiratory symptoms among very young children.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784415PMC
http://dx.doi.org/10.1164/rccm.200901-0122OCDOI Listing

Publication Analysis

Top Keywords

ambient metals
8
metals elemental
8
elemental carbon
8
york city
8
months age
8
pm25 including
8
respiratory symptoms
8
ambient
6
months
5
pm25
5

Similar Publications

Scaffolding and Heavy-Atom Effects of Metal Chains Enhanced Tunable Long Persistent Luminescence in Metal-Organic Frameworks.

Inorg Chem

December 2024

Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.

Metal-organic frameworks (MOFs) with long persistent luminescence (LPL) have attracted extensive research attention due to their potential applications in information encryption, anticounterfeiting technology, and security logic. The strategic combinations of organic phosphor linkers and metal ions lead to tremendous frameworks, which could unveil many undiscovered properties of organics. Here, the synthesis and characterization of a three-dimensional MOF (Cd-MOF) is reported, which demonstrates enhanced blue photoluminescence and a phosphorescent lifetime of 124 ms as compared to the pristine linker (HL) under ambient conditions due to the scaffolding and heavy-atom effects of metal chains in the framework.

View Article and Find Full Text PDF

Cellular and genetic responses of Phaeodactylum tricornutum to seawater acidification and copper exposure.

Mar Environ Res

December 2024

Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study, Shenzhen University, Shenzhen, China. Electronic address:

The ongoing decline in seawater pH, driven by the absorption of excess atmospheric CO, represents a major environmental issue. This reduction in pH can interact with metal pollution, resulting in complex effects on marine phytoplankton. In this study, we examined the combined impacts of seawater acidification and copper (Cu) exposure on the marine diatom Phaeodactylum tricornutum.

View Article and Find Full Text PDF

With the applications of in situ X-ray diffraction (XRD), electrical - measurement, and ambient pressure hard X-ray photoelectron spectroscopy (AP-HAXPES), the characteristics of the topotactic phase transition of LaCoO (LCO) thin films are examined. XRD measurements show clear evidence of structural phase transition (SPT) of the LCO thin films from the perovskite (PV) LaCoO to the brownmillerite (BM) LaCoO phases through the intermediate LaCoO phase at a temperature of 350 °C under high-vacuum conditions, ∼10 mbar. The reverse SPT from BM to PV phases is also found under ambient pressure (>100 mbar) of air near 100 °C.

View Article and Find Full Text PDF

Pentose oxidation and reduction, processes yielding value-added sugar-derived acids and alcohols, typically involve separate procedures necessitating distinct reaction conditions. In this study, a novel one-pot reaction for the concurrent production of xylonic acid and xylitol from xylose is proposed. This reaction was executed at ambient temperature in the presence of a base, eliminating the need for external gases, by leveraging Pt-supported catalysts.

View Article and Find Full Text PDF

Nanodots of Transition Metal Sulfides, Carbonates, and Oxides Obtained Through Spontaneous Co-Precipitation with Silica.

Nanomaterials (Basel)

December 2024

Material Science, BASF SE, RGA/BM-B007, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany.

The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and require non-aqueous media and/or high temperatures, all of which appear critical with respect to production costs, safety, and sustainability. In the present work, we demonstrate a simple one-pot process in water under ambient conditions that can produce particles of various transition metal carbonates and sulfides with sizes of only a few nanometers embedded in a silica shell, similar to particles derived from more elaborate synthesis routes, like the sol-gel process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!