Energy-efficient action potentials in hippocampal mossy fibers.

Science

Independent Hertie Research Group, Max-Planck-Institute for Brain Research, 60528 Frankfurt, Germany.

Published: September 2009

Action potentials in nonmyelinated axons are considered to contribute substantially to activity-dependent brain metabolism. Here we show that fast Na+ current decay and delayed K+ current onset during action potentials in nonmyelinated mossy fibers of the rat hippocampus minimize the overlap of their respective ion fluxes. This results in total Na+ influx and associated energy demand per action potential of only 1.3 times the theoretical minimum, in contrast to the factor of 4 used in previous energy budget calculations for neural activity. Analysis of ionic conductance parameters revealed that the properties of Na+ and K+ channels are matched to make axonal action potentials energy-efficient, minimizing their contribution to activity-dependent metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1174331DOI Listing

Publication Analysis

Top Keywords

action potentials
16
mossy fibers
8
potentials nonmyelinated
8
energy-efficient action
4
potentials
4
potentials hippocampal
4
hippocampal mossy
4
action
4
fibers action
4
nonmyelinated axons
4

Similar Publications

A novel variant of paired-associative stimulation (PAS) consisting of high-frequency peripheral nerve stimulation (PNS) and high-intensity transcranial magnetic stimulation (TMS) above the motor cortex, called high-PAS, can lead to improved motor function in patients with incomplete spinal cord injury. In PAS, the interstimulus interval (ISI) between the PNS and TMS pulses plays a significant role in the location of the intended effect of the induced plastic changes. While conventional PAS protocols (single TMS pulse often applied with intensity close to resting motor threshold, and single PNS pulse) usually require precisely defined ISIs, high-PAS can induce plasticity at a wide range of ISIs and also in spite of small ISI errors, which is helpful in clinical settings where precise ISI determination can be challenging.

View Article and Find Full Text PDF

Voltage-gated potassium channels (VGKCs) comprise the largest and most complex families of ion channels. Approximately 70 genes encode VGKC alpha subunits, which assemble into functional tetrameric channel complexes. These subunits can also combine to form heteromeric channels, significantly expanding the potential diversity of VGKCs.

View Article and Find Full Text PDF

Alcohol use disorder (AUD) is a chronic relapsing brain disorder characterized by an impaired ability to stop or control alcohol consumption despite adverse social, occupational, or health consequences. AUD affects nearly one-third of adults at some point during their lives, with an associated cost of approximately $249 billion annually in the U.S.

View Article and Find Full Text PDF

Unraveling EEG correlates of unimanual finger movements: insights from non-repetitive flexion and extension tasks.

J Neuroeng Rehabil

December 2024

Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium.

Background: The loss of finger control in individuals with neuromuscular disorders significantly impacts their quality of life. Electroencephalography (EEG)-based brain-computer interfaces that actuate neuroprostheses directly via decoded motor intentions can help restore lost finger mobility. However, the extent to which finger movements exhibit distinct and decodable EEG correlates remains unresolved.

View Article and Find Full Text PDF

The complex relationship between inflammation, its effects on neuronal excitability and the ensuing plasticity of dorsal root ganglion (DRG) sensory neurons remains to be fully explored. In this study, we have employed a system of experiments assessing the impact of inflammatory conditioned media derived from activated immune cells on the excitability and activity of DRG neurons and how this relates to subsequent growth responses of these cells. We show here that an early phase of increased neuronal activity in response to inflammatory conditioned media is critical for the engagement of plastic processes and that neuronal excitability profiles are linked through time to the structural phenotype of individual neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!