Background: MicroRNAs (miRNAs) are endogenous, small noncoding RNAs. Because of their size, abundance, tissue specificity, and relative stability in plasma, miRNAs hold promise as unique accessible biomarkers to monitor tissue injury.
Methods: We investigated the use of liver-, muscle- and brain-specific miRNAs as circulating biomarkers of tissue injury. We used a highly sensitive quantitative PCR assay to measure specific miRNAs (miR-122, miR-133a, and miR-124) in plasma samples from rats treated with liver or muscle toxicants and from a rat surgical model of stroke.
Results: We observed increases in plasma concentrations of miR-122, miR-133a, and miR-124 corresponding to injuries in liver, muscle, and brain, respectively. miR-122 and miR-133a illustrated specificity for liver and muscle toxicity, respectively, because they were not detectable in the plasma of animals with toxicity to the other organ. This result contrasted with the results for alanine aminotransferase (ALT) and aspartate aminotransferase, which were both increased with either organ toxicity. Furthermore, miR-122 exhibited a diagnostic sensitivity superior to that of ALT when the results were correlated to the liver histopathologic results. The miR-124 concentration increased in the plasma of rats 8 h after surgery to produce brain injury and peaked at 24 h, while the miR-122 and miR-133a concentrations remained at baseline values.
Conclusions: These results demonstrate that tissue-specific miRNAs may serve as diagnostically sensitive plasma biomarkers of tissue injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1373/clinchem.2009.131797 | DOI Listing |
Rev Assoc Med Bras (1992)
September 2024
Mersin University, Medical Faculty, Department of Medical Biochemistry - Mersin, Turkey.
Objective: Osteoporosis, defined as a systemic skeletal disease, is characterized by increased bone fragility and fracture risk. Studies have shown that dysregulation of the functions of miRNAs or the mechanisms they mediate may be an important pathological factor in bone degeneration. Therefore, the aim of the study was to determine the role of miRNAs, which are thought to play a role in bone metabolism, in osteoporosis.
View Article and Find Full Text PDFGenes Genomics
October 2024
Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea.
Backgroud: Accurate estimation of post-mortem interval (PMI) is crucial in forensic investigations. MicroRNAs (miRNAs or miRs) are small non-coding RNAs that remain relatively stable within the cell nucleus despite post-mortem changes.
Objective: We assessed three target genes (miR-122, miR-133a, and miR-206) for PMI estimation using 72 healthy adult male BALB/c mice exposed to two different temperatures (4 and 21℃) at nine different time points over 10 days.
J Pers Med
April 2024
Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA.
Calcif Tissue Int
April 2024
College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA, 23284, USA.
During endochondral bone formation, growth plate chondrocytes are differentially regulated by various factors and hormones. As the cellular phenotype changes, the composition of the extracellular matrix is altered, including the production and composition of matrix vesicles (MV) and their cargo of microRNA. The regulatory functions of these MV microRNA in the growth plate are still largely unknown.
View Article and Find Full Text PDFJ Endocrinol Invest
March 2024
Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy.
Purpose: Impairment of skeletal muscle mass and strength affects 40-70% of patients with active Cushing's syndrome (CS). Glucocorticoid excess sustains muscle atrophy and weakness, while muscle-specific microRNAs (myomiRs) level changes were associated with muscle organization and function perturbation. The aim of the current study is to explore changes in circulating myomiRs in CS patients compared to healthy controls and their involvement in IGFI/PI3K/Akt/mTOR pathway regulation in skeletal muscle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!