Stimulus-secretion coupling (SSC) in endocrine cells remains underappreciated as a subject for the study/teaching of general physiology. In the present article, we review key new electrophysiological, electrochemical, and fluorescence optical techniques for the study of exocytosis in single cells that have made this a fertile area for recent research. Based on findings using these techniques, we developed a model of SSC for adrenal chromaffin cells that blends features of Ca(2+) entry-dependent SSC (characteristic of neurons) with G protein receptor-coupled, Ca(2+) release-dependent, and second messenger-dependent SSC (characteristic of epithelial exocrine cells and nucleated blood cells). This model requires two distinct pools of secretory graunules with differing Ca(2+) sensitivities. We extended this model to account for SSC in a wide variety of peripheral and hypothalamic/pituitary-based endocrine cells. These include osmosensitive magnocellular neurosecretory cells releasing antidiuretic hormone, stretch-sensitive atrial myocytes secreting atrial natriuretic peptide, K(+)-sensitive adrenal glomerulosa cells secreting aldosterone, Ca(2+)-sensitive parathyroid chief cells secreting parathyroid hormone, and glucose-sensitive beta- and alpha-cells of pancreatic islets secreting insulin and glucagon, respectively. We conclude this article with implications of this approach for pathophysiology and therapeutics, including defects in chief cell Ca(2+) sensitivity, resulting in the hyperparathyroidism of renal disease, and defects in biphasic insulin secretion, resulting in diabetes mellitus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747786 | PMC |
http://dx.doi.org/10.1152/advan.90213.2008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!