Violet smelling ionones 1-3, occurring in the headspace of different flowers, are well-known perfumery raw materials. With the goal to recognize the still ill-defined spatial arrangement of structural features relevant to the binding of ionones to olfactory G-protein coupled receptors, through B3LYP/6-31G(d) modeling studies we identified bicyclic compounds 7-9 as conformationally constrained 13-alkyl-substituted analogues of monocyclic alpha- and gamma-ionones. They were thus synthesized to evaluate the olfactory properties. The enantioselective syntheses of 7-9 entailed two common key steps: (i) a Diels-Alder reaction to construct the octalinic core and (ii) a Julia-Lythgoe olefination to install the alpha,beta-enone side chain. The odor thresholds of synthetic 7 and 9 were significantly lower than the corresponding parent ionones, and 9 showed the lowest threshold value among violet-smelling odorants examined so far. Modeling studies suggested a nearly identical spatial orientation of key hydrophobic and polar moieties of compounds 1, 3, and 4-9. Presumably, interaction of these moieties with ionone olfactory receptors (ORs) triggers a similar receptor code that is ultimately interpreted by the human brain as a pleasant woody-violet smell. These results open the way to studies aimed at identifying and modeling complementary binding sites on alpha-helical domains of ionone receptor proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo9014936DOI Listing

Publication Analysis

Top Keywords

features relevant
8
modeling studies
8
enantioselective synthesis
4
olfactory
4
synthesis olfactory
4
olfactory evaluation
4
evaluation bicyclic
4
bicyclic alpha-
4
alpha- gamma-ionone
4
gamma-ionone derivatives
4

Similar Publications

The rising incidence of pancreatic diseases, including acute and chronic pancreatitis and various pancreatic neoplasms, poses a significant global health challenge. Pancreatic ductal adenocarcinoma (PDAC) for example, has a high mortality rate due to late-stage diagnosis and its inaccessible location. Advances in imaging technologies, though improving diagnostic capabilities, still necessitate biopsy confirmation.

View Article and Find Full Text PDF

Prokaryotic heme biosynthesis in Gram-positive bacteria follows the coproporphyrin-dependent heme biosynthesis pathway. The last step in this pathway is catalyzed by the enzyme coproheme decarboxylase, which oxidatively transforms two propionate groups into vinyl groups yielding heme b. The catalytic reaction cycle of coproheme decarboxylases exhibits four different states: the apo-form, the substrate (coproheme)-bound form, a transient three-propionate intermediate form (monovinyl, monopropionate deuteroheme; MMD), and the product (heme b)-bound form.

View Article and Find Full Text PDF

Background: Mounting evidence underline the relevance of macromolecular complexes in cancer. Integrins frequently recruit ion channels and transporters within complexes which behave as signaling hubs. A complex composed by β1 integrin, hERG1 K channel, the neonatal form of the Na channel Na 1.

View Article and Find Full Text PDF

Noise-induced hearing loss (NIHL) is a common occupational condition. The aim of this study was to develop a classification model for NIHL on the basis of both functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging (sMRI) by applying machine learning methods. fMRI indices such as the amplitude of low-frequency fluctuation (ALFF), fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), degree of centrality (DC), and sMRI indices such as gray matter volume (GMV), white matter volume (WMV), and cortical thickness were extracted from each brain region.

View Article and Find Full Text PDF

Prostate cancer is a heterogeneous disease with a slow progression and a highly variable clinical outcome. The tumor suppressor genes PTEN and TP53 are frequently mutated in prostate cancer and are predictive of early metastatic dissemination and unfavorable patient outcomes. The progression of solid tumors to metastasis is often associated with increased cell plasticity, but the complex events underlying TP53-loss-induced disease aggressiveness remain incompletely understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!