Detection of specific DNA sequences is central to modern molecular biology and also to molecular diagnostics where identification of a particular disease is based on nucleic acid identification. Many methods exist, and fluorescence spectroscopy dominates the detection technologies employed with different assay formats. This study demonstrates the use of surface-enhanced resonance Raman scattering (SERRS) to detect specific DNA sequences when coupled with modified SERRS-active probes that have been designed to modify the affinity of double- and single-stranded DNA for the surface of silver nanoparticles resulting in discernible differences in the SERRS which can be correlated to the specific DNA hybridization event. The principle of the assay lies on the lack of affinity of double-stranded DNA for silver nanoparticle surfaces; therefore, hybridization of the probe to the target results in a reduction in the SERRS signal. Use of locked nucleic acid (LNA) residues in the DNA probes resulted in greater discrimination between exact match and mismatches when used in comparison to unmodified labeled DNA probes. Polymerase chain reaction (PCR) products were detected using this methodology, and ultimately a multiplex detection of sequences relating to a hospital-acquired infection, namely, methicillin-resistant Staphylococcus aureus (MRSA), demonstrated the versatility and applicability of this approach to real-life situations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac901361b | DOI Listing |
Genome
January 2025
USDA-ARS, Wheat, Sorghum & Forage Research Unit, Lincoln, Nebraska, United States.
(2n=2x=14, genome SS) is a wild relative of wheat and a donor of useful traits for wheat improvement. Several whole-genome studies compared genic regions of from the section and wheat and found that is most closely related to the wheat B subgenome but is not its direct progenitor. The results showed that a B subgenome ancestor diverged from more than 4 MYA and either has not yet been discovered, or is extinct.
View Article and Find Full Text PDFAnnu Rev Biophys
January 2025
1CREST Center for Cellular and Biomolecular Machines, University of California, Merced, California, USA; email:
Like their prokaryotic counterparts, eukaryotic transcription factors must recognize specific DNA sites, search for them efficiently, and bind to them to help recruit or block the transcription machinery. For eukaryotic factors, however, the genetic signals are extremely complex and scattered over vast, multichromosome genomes, while the DNA interplay occurs in a varying landscape defined by chromatin remodeling events and epigenetic modifications. Eukaryotic factors are rich in intrinsically disordered regions and are also distinct in their recognition of short DNA motifs and utilization of open DNA interaction interfaces as ways to gain access to DNA on nucleosomes.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Department of Biology, University of Padova, Via U.Bassi 58/ B, 35131, Italy.
Shallow whole-genome sequencing (sWGS) offers a cost-effective approach to detect copy number alterations (CNAs). However, there remains a gap for a standardized workflow specifically designed for sWGS analysis. To address this need, in this work we present SAMURAI, a bioinformatics pipeline specifically designed for analyzing CNAs from sWGS data in a standardized and reproducible manner.
View Article and Find Full Text PDFPLoS One
January 2025
Instituto René Rachou, Fiocruz Minas, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Minas Gerais, Brazil.
Background: To develop an effective vaccine against Plasmodium vivax, the most widely dispersed human malaria parasite, it is critical to understand how coinfections with other pathogens could impact malaria-specific immune response. A recent conceptual study proposed that Epstein-Barr virus (EBV), a highly prevalent human herpesvirus that establishes lifelong persistent infection, may influence P. vivax antibody responses.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China; National Health Commission Key Laboratory of Birth Defect Research and Preventio, Hunan Provincial Maternal and Child Health Care Hospital;
Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!