DNA sequence detection using surface-enhanced resonance Raman spectroscopy in a homogeneous multiplexed assay.

Anal Chem

Centre for Molecular Nanometrolgy, WestCHEM, Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.

Published: October 2009

Detection of specific DNA sequences is central to modern molecular biology and also to molecular diagnostics where identification of a particular disease is based on nucleic acid identification. Many methods exist, and fluorescence spectroscopy dominates the detection technologies employed with different assay formats. This study demonstrates the use of surface-enhanced resonance Raman scattering (SERRS) to detect specific DNA sequences when coupled with modified SERRS-active probes that have been designed to modify the affinity of double- and single-stranded DNA for the surface of silver nanoparticles resulting in discernible differences in the SERRS which can be correlated to the specific DNA hybridization event. The principle of the assay lies on the lack of affinity of double-stranded DNA for silver nanoparticle surfaces; therefore, hybridization of the probe to the target results in a reduction in the SERRS signal. Use of locked nucleic acid (LNA) residues in the DNA probes resulted in greater discrimination between exact match and mismatches when used in comparison to unmodified labeled DNA probes. Polymerase chain reaction (PCR) products were detected using this methodology, and ultimately a multiplex detection of sequences relating to a hospital-acquired infection, namely, methicillin-resistant Staphylococcus aureus (MRSA), demonstrated the versatility and applicability of this approach to real-life situations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac901361bDOI Listing

Publication Analysis

Top Keywords

specific dna
12
dna
8
surface-enhanced resonance
8
resonance raman
8
dna sequences
8
nucleic acid
8
dna probes
8
dna sequence
4
detection
4
sequence detection
4

Similar Publications

Comparative analysis of and wheat repetitive elements and development of S genome-specific FISH painting.

Genome

January 2025

USDA-ARS, Wheat, Sorghum & Forage Research Unit, Lincoln, Nebraska, United States.

(2n=2x=14, genome SS) is a wild relative of wheat and a donor of useful traits for wheat improvement. Several whole-genome studies compared genic regions of from the section and wheat and found that is most closely related to the wheat B subgenome but is not its direct progenitor. The results showed that a B subgenome ancestor diverged from more than 4 MYA and either has not yet been discovered, or is extinct.

View Article and Find Full Text PDF

Mechanisms for DNA Interplay in Eukaryotic Transcription Factors.

Annu Rev Biophys

January 2025

1CREST Center for Cellular and Biomolecular Machines, University of California, Merced, California, USA; email:

Like their prokaryotic counterparts, eukaryotic transcription factors must recognize specific DNA sites, search for them efficiently, and bind to them to help recruit or block the transcription machinery. For eukaryotic factors, however, the genetic signals are extremely complex and scattered over vast, multichromosome genomes, while the DNA interplay occurs in a varying landscape defined by chromatin remodeling events and epigenetic modifications. Eukaryotic factors are rich in intrinsically disordered regions and are also distinct in their recognition of short DNA motifs and utilization of open DNA interaction interfaces as ways to gain access to DNA on nucleosomes.

View Article and Find Full Text PDF

Shallow whole-genome sequencing (sWGS) offers a cost-effective approach to detect copy number alterations (CNAs). However, there remains a gap for a standardized workflow specifically designed for sWGS analysis. To address this need, in this work we present SAMURAI, a bioinformatics pipeline specifically designed for analyzing CNAs from sWGS data in a standardized and reproducible manner.

View Article and Find Full Text PDF

Background: To develop an effective vaccine against Plasmodium vivax, the most widely dispersed human malaria parasite, it is critical to understand how coinfections with other pathogens could impact malaria-specific immune response. A recent conceptual study proposed that Epstein-Barr virus (EBV), a highly prevalent human herpesvirus that establishes lifelong persistent infection, may influence P. vivax antibody responses.

View Article and Find Full Text PDF

Proximity Ligation Assay to Study Oncogene-Derived Transcription-Replication Conflicts.

J Vis Exp

January 2025

Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China; National Health Commission Key Laboratory of Birth Defect Research and Preventio, Hunan Provincial Maternal and Child Health Care Hospital;

Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!