Ordered cubic mesoporous silicas with large pore sizes synthesized via high-temperature route.

Langmuir

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, PR China.

Published: November 2009

Ordered cubic mesoporous silicas with large pore sizes (LP-SBA-16) have been successfully synthesized at high temperatures (180-220 degrees C) using polymer surfactant of F127 as a template. Compared with conventional SBA-16 with entrance size at 3.6 nm, LP-SBA-16 samples synthesized at high temperatures show large entrance sizes at 11.8-24.7 nm, confirmed by the pore size distribution and TEM images. The formation of these large pore sizes in the samples is attributed to the increase of surfactant hydrophobicity and the merging of mesopores at high temperatures. The results obtained from NMR and XRD techniques show that ordered mesostructure in LP-SBA-16 samples basically remained even if the surfactant (F127) is fully decomposed at high temperatures, indicating that F127 surfactant becomes unimportant when the mesoporous walls of silica have been condensed. Furthermore, we have compared the adsorption capacity of myoglobin over conventional SBA-16 and LP-SBA-16 samples, and it is found that LP-SBA-16 samples exhibit much higher adsorption capacity than conventional SBA-16, which is potentially important for immobilization of enzymes on ordered mesoporous materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la901846uDOI Listing

Publication Analysis

Top Keywords

high temperatures
16
lp-sba-16 samples
16
large pore
12
pore sizes
12
conventional sba-16
12
ordered cubic
8
cubic mesoporous
8
mesoporous silicas
8
silicas large
8
synthesized high
8

Similar Publications

Indian Himalayan Region (IHR) supports a plethora of biodiversity with a unique assemblage of many charismatic and endemic species. We assessed the genetic diversity, demographic history, and habitat suitability of blue sheep (Pseudois nayaur) in the IHR through the analysis of the mitochondrial DNA (mtDNA) control region (CR) and Cytochrome b gene, and 14 ecological predictor variables. We observed high genetic divergence and designated them into two genetic lineage groups, i.

View Article and Find Full Text PDF

Mosses and lichens are often used to assess atmospheric deposition of Pb. The most widely used method for determining this isotope is gamma spectrometric analysis. There is often a need to enhance the sensitivity of the method, which can be achieved by pre-concentrating Pb.

View Article and Find Full Text PDF

Currently, the development of red Mn-activated fluoride luminescent materials attracts a lot of attention in optical thermometry sensors, solid lighting, display, and plant growth areas. Nevertheless, the thermal stability of Mn-activated fluoride luminescent materials is still a crucial issue. Herein, a new red RbNaVF:Mn luminescent material with outstanding thermal stability was successfully synthesized through the facial coprecipitation method.

View Article and Find Full Text PDF

Room-Temperature CsPbI-Quantum-Dot Reinforced Solid-State Li-Polymer Battery.

Small

January 2025

Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

A novel polymer electrolyte based on CsPbI quantum dots (QDs) reinforced polyacrylonitrile (PAN), named as PIL, is exploited to address the low room-temperature (RT) ion conductivity and poor interfacial compatibility of polymer solid-state electrolytes. After optimizing the content of CsPbI QDs, RT ion conductivity of PIL largely increased from 0.077 to 0.

View Article and Find Full Text PDF

Efficient Extraction of Phenols from Coal Tar and Preparation of Phenolic Resin-Based Porous Carbon for Advanced Supercapacitor Application.

Small

January 2025

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China.

Developing simple and efficient extraction methods for phenolic substances from coal tar, which facilitate their direct transformation into high-performance electrode materials, holds considerable practical significance. In this study, amide-zinc chloride deep eutectic solvents are employed for efficient phenol extraction. The optimal phenol extraction process is subsequently investigated, and it is found that the robust hydrogen bonding interactions between solvents and phenols significantly enhance extraction efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!