Objective: This study investigated resting concentrations of selected androgens after 3 weeks of creatine supplementation in male rugby players. It was hypothesized that the ratio of dihydrotestosterone (DHT, a biologically more active androgen) to testosterone (T) would change with creatine supplementation.

Design: Double-blind placebo-controlled crossover study with a 6-week washout period.

Setting: Rugby Institute in South Africa.

Participants: College-aged rugby players (n = 20) volunteered for the study, which took place during the competitive season.

Interventions: Subjects loaded with creatine (25 g/day creatine with 25 g/day glucose) or placebo (50 g/day glucose) for 7 days followed by 14 days of maintenance (5 g/day creatine with 25 g/day glucose or 30 g/day glucose placebo).

Main Outcome Measures: Serum T and DHT were measured and ratio calculated at baseline and after 7 days and 21 days of creatine supplementation (or placebo). Body composition measurements were taken at each time point.

Results: After 7 days of creatine loading, or a further 14 days of creatine maintenance dose, serum T levels did not change. However, levels of DHT increased by 56% after 7 days of creatine loading and remained 40% above baseline after 14 days maintenance (P < 0.001). The ratio of DHT:T also increased by 36% after 7 days creatine supplementation and remained elevated by 22% after the maintenance dose (P < 0.01).

Conclusions: Creatine supplementation may, in part, act through an increased rate of conversion of T to DHT. Further investigation is warranted as a result of the high frequency of individuals using creatine supplementation and the long-term safety of alterations in circulating androgen composition. STATEMENT OF CLINICAL RELEVANCE: Although creatine is a widely used ergogenic aid, the mechanisms of action are incompletely understood, particularly in relation to dihydrotestosterone, and therefore the long-term clinical safety cannot be guaranteed.

Download full-text PDF

Source
http://dx.doi.org/10.1097/JSM.0b013e3181b8b52fDOI Listing

Publication Analysis

Top Keywords

creatine supplementation
20
days creatine
20
g/day glucose
16
creatine
14
rugby players
12
creatine g/day
12
days
9
weeks creatine
8
college-aged rugby
8
g/day creatine
8

Similar Publications

One in five couples who wish to conceive is infertile, and half of these couples have male infertility. However, the causes of male infertility are still largely unknown. Creatine is stored in the body as an energy buffer, and the testes are its second-largest reservoir after muscles.

View Article and Find Full Text PDF

Creatine monohydrate supplementation (CrM) is a safe and effective intervention for improving certain aspects of sport, exercise performance, and health across the lifespan. Despite its evidence-based pedigree, several questions and misconceptions about CrM remain. To initially address some of these concerns, our group published a narrative review in 2021 discussing the scientific evidence as to whether CrM leads to water retention and fat accumulation, is a steroid, causes hair loss, dehydration or muscle cramping, adversely affects renal and liver function, and if CrM is safe and/or effective for children, adolescents, biological females, and older adults.

View Article and Find Full Text PDF

H and P MR Spectroscopy to Assess Muscle Mitochondrial Dysfunction in Long COVID.

Radiology

December 2024

From the Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK (L.E.M.F., M.P.C., M.J., A.S., Z.A., S.N., D.J.T., B.R., L.V.); Oncology and Haematology Centre, Churchill Hospital, Oxford, UK (A.S.); Axcella Therapeutics, Cambridge, Mass (K.A.); and Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia (L.V.).

Background Emerging evidence suggests mitochondrial dysfunction may play a role in the fatigue experienced by individuals with post-COVID-19 condition (PCC), commonly called long COVID, which can be assessed using MR spectroscopy. Purpose To compare mitochondrial function between participants with fatigue-predominant PCC and healthy control participants using MR spectroscopy, and to investigate the relationship between MR spectroscopic parameters and fatigue using the 11-item Chalder fatigue questionnaire. Materials and Methods This prospective, observational, single-center study (June 2021 to January 2024) included participants with PCC who reported moderate to severe fatigue, with normal blood test and echocardiographic results, alongside control participants without fatigue symptoms.

View Article and Find Full Text PDF

Background: Diabetes is a significant risk factor for sarcopenia, a muscle dystrophy affecting older individuals. Sarcopenia management typically involves resistance exercise and oral supplements. Given the limitations of resistance training for many elderly individuals, oral supplements play a crucial role in treatment.

View Article and Find Full Text PDF

Using proton magnetic resonance spectroscopy (H MRS) to determine total creatine (tCr) concentrations will become increasingly prevalent, as the role of creatine (Cr) in supporting brain health gains interest. Methodological limitations and margins of error in repeated H MRS, which often surpass reported effects of supplementation, permeate existing literature. We examined the intra- and inter-session reliability and repeatability of H MRS for determining tCr concentrations across multiple brain regions (midbrain, visual cortex and frontal cortex).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!