Of all available reconstruction methods, statistical iterative reconstruction algorithms appear particularly promising since they enable accurate physical noise modeling. The newly developed compressive sampling/compressed sensing (CS) algorithm has shown the potential to accurately reconstruct images from highly undersampled data. The CS algorithm can be implemented in the statistical reconstruction framework as well. In this study, we compared the performance of two standard statistical reconstruction algorithms (penalized weighted least squares and q-GGMRF) to the CS algorithm. In assessing the image quality using these iterative reconstructions, it is critical to utilize realistic background anatomy as the reconstruction results are object dependent. A cadaver head was scanned on a Varian Trilogy system at different dose levels. Several figures of merit including the relative root mean square error and a quality factor which accounts for the noise performance and the spatial resolution were introduced to objectively evaluate reconstruction performance. A comparison is presented between the three algorithms for a constant undersampling factor comparing different algorithms at several dose levels. To facilitate this comparison, the original CS method was formulated in the framework of the statistical image reconstruction algorithms. Important conclusions of the measurements from our studies are that (1) for realistic neuro-anatomy, over 100 projections are required to avoid streak artifacts in the reconstructed images even with CS reconstruction, (2) regardless of the algorithm employed, it is beneficial to distribute the total dose to more views as long as each view remains quantum noise limited and (3) the total variation-based CS method is not appropriate for very low dose levels because while it can mitigate streaking artifacts, the images exhibit patchy behavior, which is potentially harmful for medical diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3354336PMC
http://dx.doi.org/10.1088/0031-9155/54/19/008DOI Listing

Publication Analysis

Top Keywords

reconstruction algorithms
16
dose levels
12
reconstruction
9
performance comparison
8
statistical iterative
8
iterative reconstruction
8
statistical reconstruction
8
algorithms
6
statistical
5
performance
4

Similar Publications

There has been much controversy regarding the order in which cytoreductive nephrectomy (CN) and systemic therapy (ST) are applied for patients with metastatic renal cell carcinoma (mRCC). We aimed to investigate the role of deferred CN (dCN) in mRCC, particularly in the current era of immunotherapy. A systematic literature search was conducted on PubMed, Embase, and Scopus for studies comparing dCN versus any non-dCN strategy, in any temporal sequence, with the provision of Kaplan-Meier curves for overall survival (OS).

View Article and Find Full Text PDF

Purpose: High dose rate (HDR) prostate brachytherapy (BT) procedure requires image-guided needle insertion. Given that general anesthesia is often employed during the procedure, minimizing overall planning time is crucial. In this study, we explore the clinical feasibility and time-saving potential of artificial intelligence (AI)-driven auto-reconstruction of transperineal needles in the context of US-guided prostate BT planning.

View Article and Find Full Text PDF

Contrastive Graph Representation Learning with Adversarial Cross-View Reconstruction and Information Bottleneck.

Neural Netw

January 2025

School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Ministry of Education Key Laboratory for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, 710049, China. Electronic address:

Graph Neural Networks (GNNs) have received extensive research attention due to their powerful information aggregation capabilities. Despite the success of GNNs, most of them suffer from the popularity bias issue in a graph caused by a small number of popular categories. Additionally, real graph datasets always contain incorrect node labels, which hinders GNNs from learning effective node representations.

View Article and Find Full Text PDF

Accurately predicting carbon prices is crucial for effective government decision-making and maintenance the stable operation of carbon markets. However, the instability and nonlinearity of carbon prices, driven by the complex interaction between economic, environmental, and political factors, often result in inaccurate predictions. To confront this challenge, this paper proposed a carbon price prediction model that integrates dual decomposition integration and error correction.

View Article and Find Full Text PDF

Modeling Optical Coherence Tomography (OCT) images is crucial for numerous image processing applications and aids ophthalmologists in the early detection of macular abnormalities. Sparse representation-based models, particularly dictionary learning (DL), play a pivotal role in image modeling. Traditional DL methods often transform higher-order tensors into vectors and then aggregate them into a matrix, which overlooks the inherent multi-dimensional structure of the data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!