Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are currently recognized as the most common genetic cause of parkinsonism. Among the large number of LRRK2 mutations identified to date, the G2019S variant is the most common. In Asia, however, another LRRK2 variant, G2385R, appears to occur more frequently. To better understand the contribution of different LRRK2 variants toward disease pathogenesis, we generated transgenic Drosophila over-expressing various human LRRK2 alleles, including wild type, G2019S, Y1699C, and G2385R LRRK2. We found that transgenic flies harboring G2019S, Y1699C, or G2385R LRRK2 variant, but not the wild-type protein, exhibit late-onset loss of dopaminergic (DA) neurons in selected clusters that is accompanied by locomotion deficits. Furthermore, LRRK2 mutant flies also display reduced lifespan and increased sensitivity to rotenone, a mitochondrial complex I inhibitor. Importantly, coexpression of human parkin in LRRK2 G2019S-expressing flies provides significant protection against DA neurodegeneration that occurs with age or in response to rotenone. Together, our results suggest a potential link between LRRK2, parkin, and mitochondria in the pathogenesis of LRRK2-related parkinsonism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771772 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2375-09.2009 | DOI Listing |
J Cell Biol
February 2025
Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
Mutations that increase LRRK2 kinase activity have been linked to Parkinson's disease and Crohn's disease. LRRK2 is also activated by lysosome damage. However, the endogenous cellular mechanisms that control LRRK2 kinase activity are not well understood.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
Background: Mounting evidence suggests that Parkinson's disease (PD) and inflammatory bowel disease (IBD) are closely associated and becoming global health burdens. However, the causal relationships and common pathogeneses between them are uncertain. Furthermore, they are uncurable.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 30843, Singapore.
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. Currently, PD is incurable, and the diagnosis of PD mainly relies on clinical manifestations. The central pathological event in PD is the abnormal aggregation and deposition of misfolded α-synuclein (α-Syn) protein aggregates in the Lewy body (LB) in affected brain areas.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, GR-12243 Athens, Greece.
As the global population ages, the rising prevalence of neurodegenerative diseases, characterized by abnormal protein aggregates, presents significant challenges for early diagnosis and disease monitoring. Identifying accessible tissue biomarkers is crucial for advancing our ability to detect and track the progression of these diseases. Among the most promising biomarkers is the skin, which shares a common embryological origin with the brain and central nervous system (CNS).
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA.
Mutations in leucine-rich repeat kinase 2 () are the most common cause of familial and sporadic Parkinson's disease (PD). While the clinical features of -PD patients resemble those of typical PD, there are significant differences in the pathological findings. The pathological hallmark of definite PD is the presence of α-synuclein (αSYN)-positive Lewy-related pathology; however, approximately half of -PD cases do not have Lewy-related pathology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!