Systemic lupus erythematosus (SLE) is an autoimmune disease mediated by T and B cells. It is characterized by a variety of autoantibodies and systemic clinical manifestations. A tolerogenic peptide, designated hCDR1, ameliorated the serological and clinical manifestations of SLE in both spontaneous and induced models of lupus. In the present study, we evaluated the status of mature B cells in the bone marrow (BM) of SLE-afflicted mice, and determined the effect of treatment with the tolerogenic peptide hCDR1 on these cells. We demonstrate herein that mature B cells of the BM of SLE-afflicted (New Zealand Black x New Zealand White)F(1) mice were largely expanded, and that treatment with hCDR1 down-regulated this population. Moreover, treatment with hCDR1 inhibited the expression of the pathogenic cytokines [interferon-gamma and interleukin (IL)-10], whereas it up-regulated the expression of transforming growth factor-beta in the BM. Treatment with hCDR1 up-regulated the rates of apoptosis of mature B cells. The latter was associated with inhibited expression of the survival Bcl-xL gene and of IL-7 by BM cells. Furthermore, the addition of recombinant IL-7 abrogated the suppressive effects of hCDR1 on Bcl-xL in the BM cells and resulted in elevated levels of apoptosis. Hence, the down-regulated production of IL-7 contributes to the hCDR1-mediated apoptosis of mature B cells in the BM of SLE-afflicted mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767314 | PMC |
http://dx.doi.org/10.1111/j.1365-2567.2009.03109.x | DOI Listing |
J Mammary Gland Biol Neoplasia
January 2025
Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
School of First Clinical Medical, Ningxia Medical University, Yinchuan, 750004, China.
Background: Helicobacter pylori (H. pylori), a specific bacterium capable of surviving in the acidic environment of the stomach, has been recognized as a group of causative agents of gastric cancer. Therefore, the development of mucosal vaccines against H.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Faculty of Veterinary Sciences, University of Buenos Aires, Buenos Aires, Argentina.
Background: Lower urinary tract disease is a common clinical condition in dogs, usually presenting with dysuria, pollakiuria and haematuria. Diabetes mellitus is a predisposing factor for urinary tract infection in both humans and dogs and does not necessarily present with clinical signs. In this case report, we describe for the first time a case of cystitis glandularis in a dog with diabetes mellitus, associated with Escherichia coli urinary tract infection.
View Article and Find Full Text PDFNat Protoc
January 2025
Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
The clinical potential of current chimeric antigen receptor-engineered T (CAR-T) cell therapy is hampered by its autologous nature that poses considerable challenges in manufacturing, costs and patient selection. This spurs demand for off-the-shelf therapies. Here we introduce an ex vivo feeder-free culture method to differentiate gene-engineered hematopoietic stem and progenitor (HSP) cells into allogeneic invariant natural killer T (NKT) cells and their CAR-armed derivatives (CAR-NKT cells).
View Article and Find Full Text PDFNat Neurosci
January 2025
School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan.
Microglia-resident immune cells in the central nervous system-undergo morphological and functional changes in response to signals from the local environment and mature into various homeostatic states. However, niche signals underlying microglial differentiation and maturation remain unknown. Here, we show that neuronal micronuclei (MN) transfer to microglia, which is followed by changing microglial characteristics during the postnatal period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!