Interferon-gamma bolsters CD95/Fas-mediated apoptosis of astroglioma cells.

FEBS J

Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanita', Rome, Italy.

Published: October 2009

AI Article Synopsis

  • Scientists studied how some cancer cells resist dying and how a substance called interferon-gamma can help make them more likely to die.
  • They found that interferon-gamma makes changes in the cancer cells that help them respond better to a death signal.
  • The research suggests that interferon-gamma might be a useful way to treat brain cancer by making these cells more sensitive to treatments that cause them to die.

Article Abstract

In the present study, we investigated the mechanisms of the resistance to CD95-mediated cell death and the effects of interferon-gamma in modulating the susceptibility to CD95-induced apoptosis of human astroglioma cells. We found that interferon-gamma administration sensitized cancer cells to CD95-mediated apoptosis. The mechanism underlying this sensitization appeared to be associated with a framework of cell changes, including up-regulation of death receptor at the cell surface, pro-apoptotic molecule Bax and Bak over-expression and mitochondria hyperpolarization, as is known to be associated with cell sensitization to apoptosis. An involvement of the proteasome activity in the mechanism of sensitization by interferon-gamma was also detected, probably as a result of the differing expression of catalytic proteasome subunits. Taken together, these findings suggest that interferon-gamma could represent a promising candidate for modulating astroglioma cell apoptotic susceptibility.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-4658.2009.07271.xDOI Listing

Publication Analysis

Top Keywords

astroglioma cells
8
interferon-gamma
5
cell
5
interferon-gamma bolsters
4
bolsters cd95/fas-mediated
4
apoptosis
4
cd95/fas-mediated apoptosis
4
apoptosis astroglioma
4
cells study
4
study investigated
4

Similar Publications

Stereotactic injection of murine brain tumor cells for neuro-oncology studies.

Methods Cell Biol

January 2025

Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States. Electronic address:

Glioblastomas (GBMs) are the most common and aggressive brain tumors, with a poor prognosis. Effective preclinical models are crucial to investigate GBM biology and develop novel treatments. Syngeneic models, which consist in injecting murine GBM cells into mice with a similar genetic background, offer reproducibility, cost-effectiveness, and an intact immune system, making them ideal for immunotherapy research.

View Article and Find Full Text PDF

Background: B7 homolog 3 (B7-H3), an overexpressed antigen across multiple solid cancers, represents a promising target for CAR T cell therapy. This study investigated the expression of B7-H3 across various solid tumors and developed novel monoclonal antibodies (mAbs) targeting B7-H3 for CAR T cell therapy.

Methods: Expression of B7-H3 across various solid tumors was evaluated using RNA-seq data from TCGA, TARGET, and GTEx datasets and by flow cytometry staining.

View Article and Find Full Text PDF

Gene Therapy for Glioblastoma Multiforme.

Viruses

January 2025

Surgical Neurology Branch, NINDS, NIH 10 Center Drive, Bethesda, MD 20892, USA.

Glioblastoma multiforme (GBM) is a devastating, aggressive primary brain tumor with poor patient outcomes and a five-year survival of less than 10%. Significant limitations to effective GBM treatment include poor drug delivery across the blood-brain barrier, drug resistance, and complex genetic tumor alterations. Gene therapy uses a mechanism different from other GBM therapies to reduce tumor growth and enhance antitumor immunity.

View Article and Find Full Text PDF

Oncolytic adenoviruses derived from human serotype 5 (Ad5) are being developed to treat cancer. Treatment efficacy could be affected by pre-existing or induced neutralizing antibodies (NAbs), in particular in repeat administration strategies. Several oncolytic adenoviruses that are currently in clinical development have modified fiber proteins to increase their infectivity.

View Article and Find Full Text PDF

Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key metabolic pathways, including glycolysis, lactate production, and lipid metabolism, are upregulated to sustain tumor survival in the hypoxic and nutrient-deprived tumor microenvironment (TME), while glutamine and tryptophan metabolism further contribute to the aggressive phenotype of GBM. These metabolic alterations impair immune cell function, leading to exhaustion and stress in CD8+ and CD4+ T cells while favoring immunosuppressive populations such as regulatory T cells (Tregs) and M2-like macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!