Molecular modelling suggests that a group of proteins in plants known as the beta-hydroxyacid dehydrogenases, or the hydroxyisobutyrate dehydrogenase superfamily, includes enzymes that reduce succinic semialdehyde and glyoxylate to gamma-hydroxybutyrate and glycolate respectively. Recent biochemical and expression studies reveal that NADPH-dependent cytosolic (termed GLYR1) and plastidial (termed GLYR2) isoforms of succinic semialdehyde/glyoxylate reductase exist in Arabidopsis. Succinic semialdehyde and glyoxylate are typically generated in leaves via two distinct metabolic pathways, gamma-aminobutyrate and glycolate respectively. In the present review, it is proposed that the GLYRs function in the detoxification of both aldehydes during stress and contribute to redox balance. Outstanding questions are highlighted in a scheme for the subcellular organization of the detoxification mechanism in Arabidopsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762691 | PMC |
http://dx.doi.org/10.1042/BJ20090826 | DOI Listing |
Protein Sci
January 2025
Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.
View Article and Find Full Text PDFProtein Sci
January 2025
Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA.
Antimicrobial resistance is a significant cause of mortality globally due to infections, a trend that is expected to continue to rise. As existing treatments fail and new drug discovery slows, the urgency to develop novel antimicrobial therapeutics grows stronger. One promising strategy involves targeting bacterial systems exclusive to pathogens, such as the transcription regulator protein GabR.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Biology, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
Heliyon
October 2024
Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, Kiyotake, Miyazaki, Japan.
Adult T-cell leukemia/lymphoma (ATLL) is a refractory blood cancer with severe immunodeficiency resulting from retroviral infection. ATLL develops in only 5 % of HTLV-1-infected individuals, but the entire mechanism of ATLL progression remains unknown. Since recent studies have reported that the gut microbiome influences the progression of various diseases, we hypothesized that ATLL is also related to the gut microbiome and aimed to investigate this relationship.
View Article and Find Full Text PDFFood Res Int
November 2024
School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!