Gold-catalyzed synthesis of carbon-bridged medium-sized rings.

Org Lett

Center for Catalysis Research and Innovation, University of Ottawa, Department of Chemistry, 10 Marie Curie, Ottawa, Ontario, Canada K1N 6N5.

Published: September 2009

Bicyclo[m.n.1]alkenone frameworks possessing quaternary carbon centers adjacent to a bridged ketone are frequently found in bioactive natural products. Although several methods have been developed to construct such frameworks, most of them are specific to a particular scaffold. Herein, we report a mild and highly efficient method to generate carbon-bridged frameworks of various sizes using phosphino gold(I) catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol901722qDOI Listing

Publication Analysis

Top Keywords

gold-catalyzed synthesis
4
synthesis carbon-bridged
4
carbon-bridged medium-sized
4
medium-sized rings
4
rings bicyclo[mn1]alkenone
4
bicyclo[mn1]alkenone frameworks
4
frameworks possessing
4
possessing quaternary
4
quaternary carbon
4
carbon centers
4

Similar Publications

Mechanistic Studies on the Gold-Catalyzed Intramolecular Hydroalkylation of Ynamides to Indenes.

ACS Omega

December 2024

Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, Brussels 1050, Belgium.

An in-depth experimental and computational study to rationalize the mechanism underlying the gold-catalyzed intramolecular hydroalkylation of ynamides to indenes is reported. Evaluating the reactivity of a set of deuterated ynamides and gold complexes allowed to get valuable insights into the mechanism of this reaction, while DFT calculations allowed to determine a plausible reaction pathway for this unprecedented transformation. This pathway involves the activation of the ynamide followed by a [1,5]-hydride shift from the highly reactive, in situ generated keteniminium ion, and a subsequent cyclization before deprotonation followed by a final protodeauration.

View Article and Find Full Text PDF

Total synthesis and target identification of marine cyclopiane diterpenes.

Nat Commun

December 2024

Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Marine cyclopianes are a family of diterpenoid with novel carbon skeleton and diverse biological activities. Herein, we report our synthetic and chemical proteomics studies of cyclopiane diterpenes which culminate in the asymmetric total synthesis of conidiogenones C, K and 12β-hydroxy conidiogenone C, and identification of Immunity-related GTPase family M protein 1 (IRGM1) as a cellular target. Our asymmetric synthesis commences from Wieland-Miescher ketone and features a sequential intramolecular Pauson-Khand reaction and gold-catalyzed Nazarov cyclization to rapidly construct the 6-5-5-5 tetracyclic skeleton.

View Article and Find Full Text PDF

A gold-catalyzed sulfonylation of aryl/vinyl iodides to synthesize aryl sulfones facilitated by the ligand-enabled Au(I)/Au(III) redox catalysis was developed. In the reaction, aryl sodium sulfinates or sulphinic acids can react smoothly with aryl/vinyl iodides to directly construct various aryl sulfones. The strong synthetic capabilities of sulfone synthesis are demonstrated by its easily available and handled reagents, good functional group compatibility, and late-stage application of complicated biomolecules.

View Article and Find Full Text PDF
Article Synopsis
  • - A study investigated how gold catalysts affect the synthesis of pyrazolines and dihydropyridines from imines and methyl phenylpropiolate, focusing on three different imines with unique substituents.
  • - The research found that the type of nitrogen substituent influences the reaction path: NHCOMe leads to outward ring opening and pyrazoline products, while aromatic substituents prompt inward ring opening and dihydropyridine products.
  • - The configuration of dihydropyridine is determined by the substituent on the aromatic ring, with electron-donating groups causing direct formation of 1,4-dihydropyridine and electron-withdrawing groups leading to 1,2-dihyd
View Article and Find Full Text PDF

Low-Temperature Borylation of C(sp)-O Bonds of Alkyl Ethers by Gold-Metal Oxide Cooperative Catalysis.

J Am Chem Soc

December 2024

Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji 192-0397, Tokyo, Japan.

Article Synopsis
  • * It highlights the effectiveness of gold nanoparticles on Lewis acidic metal oxides, like α-FeO, in catalyzing the conversion of dialkyl ethers and diborons at around room temperature, yielding high amounts of alkylboronates.
  • * Mechanistic studies show that the reaction occurs at the interface between the nanoparticles and metal oxides, where strong Lewis acid sites are formed, illustrating a novel technology for sustainably synthesizing valuable organoboron compounds.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!