The aim of this study was to compare the peripheral bone damage induced by different cutting systems. Four devices were tested: Er:YAG laser (2.94 mm), Piezosurgery, high-speed drill and low-speed drill. Forty-five bone sections, divided into 9 groups according to different parameters, were taken from pig mandibles within 1 h post mortem. Specimens were fixed in 10% buffered formalin, decalcified and cut in thin sections. Four different parameters were analyzed: cut precision, depth of incision, peripheral carbonization and presence of bone fragments. For statistical analysis, the Kruskal-Wallis test was applied to assess equality of sample medians among groups. All sections obtained with the Er:YAG laser showed poor peripheral carbonization. The edges of the incisions were always well-shaped and regular, no melting was observed. Piezosurgery specimens revealed superficial incisions without thermal damage but with irregular edges. The sections obtained by traditional drilling showed poor peripheral carbonization, especially if obtained at lower speed. There was statistically significant differences (p<0.01) among the cutting systems for all analyzed parameters. Er:YAG laser, gave poor peripheral carbonization, and may be considered an effective method in oral bone biopsies and permits to obtain clear and readable tissue specimens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/s0103-64402009000200013 | DOI Listing |
Background: Unexplained exertional dyspnoea without significant elevation of natriuretic peptides is common. One of the causes might be early heart failure with preserved ejection fraction (HFpEF).
Aims: This study aimed to characterize patients with exertional dyspnoea and normal/near-to-normal N-terminal pro-brain natriuretic peptide (NT-proBNP) levels with regard to early stages of HFpEF and non-cardiac causes.
Nucleic Acids Res
January 2025
School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland.
Copper compounds with artificial metallo-nuclease (AMN) activity are mechanistically unique compared to established metallodrugs. Here, we describe the development of a new dinuclear copper AMN, Cu2-BPL-C6 (BPL-C6 = bis-1,10-phenanthroline-carbon-6), prepared using click chemistry that demonstrates site-specific DNA recognition with low micromolar cleavage activity. The BPL-C6 ligand was designed to force two redox-active copper centres-central for enhancing AMN activity-to bind DNA, via two phenanthroline ligands separated by an aliphatic linker.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China.
ACS Nano
January 2025
Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China.
Plants (Basel)
December 2024
Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile.
Plant growth-promoting bacteria (PGPB) play a role in stimulating plant growth through mechanisms such as the synthesis of the phytohormone indole-3-acetic acid (IAA). The aims of this study were the characterization of IAA synthesis and degradation by the model aromatic-degrading bacterium LB400, and its growth promotion of the plant. Strain LB400 was able to synthesize IAA (measured by HPLC) during growth in the presence of tryptophan and at least one additional carbon source; synthesis of anthranilic acid was also observed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!