Optical pulses as short as 103 fsec at 695 nm and 263 fsec at 733 nm have been generated in synchronously pumped hybrid Pyridine 1 and Pyridine 2 cw dye lasers, respectively, both using the saturable absorber 1,1'-diethyl-2,2'-dicarbocyanine iodide (DDI). These results combine with other data from the same linear cavity to give direct femtosecond generation over the spectral range 560-840 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.12.000254DOI Listing

Publication Analysis

Top Keywords

synchronously pumped
8
pyridine dye
8
dye lasers
8
femtosecond synchronously
4
pumped pyridine
4
lasers optical
4
optical pulses
4
pulses short
4
short 103
4
103 fsec
4

Similar Publications

Lymphatic system failures contribute to cardiovascular and various other diseases. A critical function of the lymphatic vascular system is the active pumping of fluid from the interstitium back into the blood circulation by periodic contractions of lymphatic muscle cells (LMCs) in the vessel walls. As in cardiac pacemaking, these periodic contractions can be interpreted as occurring due to linked pacemaker oscillations in the LMC membrane potential (M-clock) and calcium concentration (C-clock).

View Article and Find Full Text PDF

Ventricular assist devices (VADs) invigorated the management of patients with advanced heart failure, providing a lifeline for patients awaiting transplantation or requiring long-term circulatory support. This article reviews recent advances in VAD technologies, focusing on key areas of progress to overcome existing challenges and the potential for future applications. The reduction or possible elimination of infection-prone components and the evolution to transcutaneous energy transfer systems are two main research fields to reach a new quality of life category for VADs patients.

View Article and Find Full Text PDF

Organization of the stalk system on electrocytes in mormyrid weakly electric fish Campylomormyrus compressirostris.

Cell Tissue Res

December 2024

Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.

The adult electric organ in weakly electric mormyrid fish consists of action-potential-generating electrocytes, structurally and functionally modified skeletal muscle cells. The electrocytes have a disc-shaped portion and, on one of its sides, numerous thin processes, termed stalklets. These unite to stalks leading to a single main stalk that carries the innervation site.

View Article and Find Full Text PDF

Power control of an autonomous wind energy conversion system based on a permanent magnet synchronous generator with integrated pumping storage.

Sci Rep

November 2024

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.

Wind energy plays a crucial role as a renewable source for electricity generation, especially in remote or isolated regions without access to the main power grid. The intermittent characteristics of wind energy make it essential to incorporate energy storage solutions to guarantee a consistent power supply. This study introduces the design, modeling, and control mechanisms of a self-sufficient wind energy conversion system (WECS) that utilizes a Permanent magnet synchronous generator (PMSG) in conjunction with a Water pumping storage station (WPS).

View Article and Find Full Text PDF

This study presents an innovative scraper pump design. The design utilizes the synchronized movement of the upper and lower scrapers of the rotor to adjust the cavity volumes on either side, facilitating efficient fluid transfer. Unlike previous studies, scraper pumps face the challenge of dynamic contact between the scraper and the rotor due to their unique structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!