Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A polymer solar cell based on poly(3-hexylthiophene) (P3HT)/iron disulfide (FeS2) nanocrystal (NC) hybrid is presented. The FeS2 NCs of 10 nm in diameter were homogeneously blended with P3HT to form an active layer of a solar cell. An extended red light harvesting up to 900 nm resulting from the NCs in the device has been demonstrated, compared to a typical absorption edge of 650 nm of a pristine P3HT. The environmentally friendly and low-cost FeS2 NCs can be used as a promising candidate for an acceptor in the polymer solar cell device application with an enhanced photovoltaic response in the extended red light region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/20/40/405207 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!