The contribution of a dysfunctional transforming growth factor-beta type II receptor (TGF beta RII) to prostate cancer initiation and progression was investigated in an in vivo mouse model. Transgenic mice harboring the dominant-negative mutant TGF-beta type II receptor (DNTGF beta RII) in mouse epithelial cell were crossed with the TRAMP prostate cancer transgenic mouse to characterize the in vivo consequences of inactivated TGF-beta signaling on prostate tumor initiation and progression. Histopathologic diagnosis of prostate specimens from the TRAMP+/DNTGF beta RII double transgenic mice revealed the appearance of early malignant changes and subsequently highly aggressive prostate tumors at a younger age, compared with littermates TRAMP+/Wt TGF beta RII mice. Immunohistochemical and Western blotting analysis revealed significantly increased proliferative and apoptotic activities, as well as vascularity and macrophage infiltration that correlated with an elevated vascular endothelial growth factor and MCP-1 protein levels in prostates from TRAMP+/DNTGF beta RII+ mice. An epithelial-mesenchymal transition (EMT) effect was also detected in prostates of TRAMP+/DNTGF beta RII mice, as documented by the loss of epithelial markers (E-cadherin and beta-catenin) and up-regulation of mesenchymal markers (N-cadherin) and EMT-transcription factor Snail. A significant increase in the androgen receptor mRNA and protein levels was associated with the early onset of prostate tumorigenesis in TRAMP+/DNTGF beta RII mice. Our results indicate that in vivo disruption of TGF-beta signaling accelerates the pathologic malignant changes in the prostate by altering the kinetics of prostate growth and inducing EMT. The study also suggests that a dysfunctional TGF beta RII augments androgen receptor expression and promotes inflammation in early stage tumor growth, thus conferring a significant contribution by TGF-beta to prostate cancer progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2747670 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-09-0758 | DOI Listing |
Cancers (Basel)
September 2024
Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35043 Marburg, Germany.
The aim of the present study was to investigate possible differences in the sensitivity of HNSCC cells to known EMT regulators. Three HNSCC cell lines (UM-SCC-1, -3, -22B) and the HaCaT control keratinocyte cell line were exposed to transforming growth factor beta 1 (TGF-β1), a known EMT master regulator, and the cellular response was evaluated by real-time cell analysis (RTCA), Western blot, quantitative PCR, flow cytometry, immunocytochemistry, and the wound closure (scratch) assay. Targeted sequencing on 50 cancer-related genes was performed using the Cancer Hotspot Panel v2.
View Article and Find Full Text PDFProtein Kinase A (PKA) is regulated spatially and temporally via scaffolding of its catalytic (Cα/β) and regulatory (RI/RII) subunits by the A-kinase-anchoring proteins (AKAP). PKA engages in poorly understood interactions with autophagy, a key degradation pathway for neuronal cell homeostasis, partly via its AKAP11 scaffold. Mutations in AKAP11 drive schizophrenia and bipolar disorders (SZ-BP) through unknown mechanisms.
View Article and Find Full Text PDFGenesis
August 2024
Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
Organisms from the five kingdoms of life use minerals to harden their tissues and make teeth, shells and skeletons, in the process of biomineralization. The sea urchin larval skeleton is an excellent system to study the biological regulation of biomineralization and its evolution. The gene regulatory network (GRN) that controls sea urchin skeletogenesis is known in great details and shows similarity to the GRN that controls vertebrates' vascularization while it is quite distinct from the GRN that drives vertebrates' bone formation.
View Article and Find Full Text PDFSci Rep
July 2024
Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
Vascular calcification, which is a major complication of diabetes mellitus, is an independent risk factor for cardiovascular disease. Osteogenic differentiation of vascular smooth muscle cells (VSMCs) is one of the key mechanisms underlying vascular calcification. Emerging evidence suggests that macrophage-derived extracellular vesicles (EVs) may be involved in calcification within atherosclerotic plaques in patients with diabetes mellitus.
View Article and Find Full Text PDFNat Commun
July 2024
Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
Low response rate, treatment relapse, and resistance remain key challenges for cancer treatment with immune checkpoint blockade (ICB). Here we report that loss of specific tumor suppressors (TS) induces an inflammatory response and promotes an immune suppressive tumor microenvironment. Importantly, low expression of these TSs is associated with a higher expression of immune checkpoint inhibitory mediators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!